Skip to main content
Log in

On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé–Hoover oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the well-known Sprott A system, which is a special case of the widely studied Nosé–Hoover oscillator. The system depends on a single real parameter a, and for suitable choices of the parameter value, it is shown to present chaotic behavior, even in the absence of an equilibrium point. In this paper, we prove that, for \(a\ne 0,\) the Sprott A system has neither invariant algebraic surfaces nor polynomial first integrals. For \(a>0\) small, by using the averaging method we prove the existence of a linearly stable periodic orbit, which bifurcates from a non-isolated zero-Hopf equilibrium point located at the origin. Moreover, we show numerically the existence of nested invariant tori surrounding this periodic orbit. Thus, we observe that these dynamical elements and their perturbation play an important role in the occurrence of chaotic behavior in the Sprott A system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baldomá, I., Seara, T.M.: Brakdown of heteroclinic orbits for some analytic unfoldings of the Hopf-zero singularity. J. Nonlinear Sci. 16, 543–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broer, H.W., Vegter, G.: Subordinate Sil’nikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theory Dyn. Syst. 4, 509–525 (1984)

    Article  MATH  Google Scholar 

  3. Buică, A., Giné, J., Llibre, J.: A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter. Phys. D 241, 528–533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cândido, M.R., Llibre, J., Novaes, D.D.: Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov–Schmidt reduction. Nonlinearity 30, 3560–3586 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  7. Han, M.: Existence of periodic orbits and invariant tori in codimension two bifurcations of three-dimensional systems. J. Syst. Sci. Math. Sci. 18, 403–409 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  Google Scholar 

  9. Hoover, W.G.: Remark on ‘Some simple chaotic flows’. Phys. Rev. E 51, 759–760 (1995)

    Article  Google Scholar 

  10. Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)

    Article  MathSciNet  Google Scholar 

  11. Jafari, S., Sprott, J.C., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J. Special Top. 224, 1469–1476 (2015)

    Article  Google Scholar 

  12. Kuznetsov, YuA: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  MATH  Google Scholar 

  13. Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034 (2014). (12 pages)

    Article  MathSciNet  MATH  Google Scholar 

  14. Llibre, J., Messias, M.: Global dynamics of the Nosé–Hoover oscillator: existence of periodic orbits and formation of invariant tori. Preprint (2017)

  15. Llibre, J., Novaes, D.D.: Improving the averaging theory for computing periodic solutions of the differential equations. Z. Angew. Math. Phys. 66, 1401–1412 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Llibre, J., Novaes, D.D., Teixeira, M.A.: Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 27, 563–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Llibre, J., Xiao, D.: Limit cycles bifurcating from a non-isolated zero-Hopf equilibrium of three-dimensional differential systems. Proc. Am. Math. Soc. 142, 2047–2062 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MATH  Google Scholar 

  19. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos 12, 659–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Messias, M., Reinol, A.C.: On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system. Nonlinear Dyn. 88, 807–821 (2017)

    Article  MATH  Google Scholar 

  21. Nosé, S.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  22. Posch, H.A., Hoover, W.G., Vesely, F.J.: Canonical dynamics of the Nosé oscillator: stability, order, and chaos. Phys. Rev. A 33, 4253–4265 (1986)

    Article  MathSciNet  Google Scholar 

  23. Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  MATH  Google Scholar 

  24. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (2007)

    MATH  Google Scholar 

  25. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM J. Math. Anal. 15, 1055–1074 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994)

    Article  MathSciNet  Google Scholar 

  27. Sprott, J.C., Hoover, W.G., Hoover, C.G.: Heat conduction, and the lack thereof, in time-reversible dynamical systems: generalized Nosé-Hoover oscillators with a temperature gradient. Phys. Rev. E 89, 042914 (2014)

    Article  Google Scholar 

  28. Sprott, J.C., Jafari, S., Pham, V.-T., Hosseini, Z.S.: A chaotic system with a single unstable node. Phys. Lett. A 379, 2030–2036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer-Verlag, Berlin (1996)

    Book  MATH  Google Scholar 

  30. Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71, 429–436 (2013)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69, 531–537 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by FAPESP Grant Number 2013/24541–0, by CNPq Grant Number 308159/2015–2 and by CAPES - Program CSF-PVE, Grant Number 88881.030454/2013. The second author is supported by FAPESP Grant Number 2013/26602-7. They are also grateful to the anonymous referee who pointed out the equivalence between the Sprott A system and the Nosé–Hoover oscillator, which enabled them to enrich the presentation of the results in this paper, by comparing both systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Messias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messias, M., Reinol, A.C. On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé–Hoover oscillator. Nonlinear Dyn 92, 1287–1297 (2018). https://doi.org/10.1007/s11071-018-4125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4125-1

Keywords

Navigation