Advertisement

Nonlinear Dynamics

, Volume 92, Issue 3, pp 1225–1241 | Cite as

Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations

  • J. Venkatramani
  • Sunetra Sarkar
  • Sayan Gupta
Original Paper

Abstract

Aeroelastic systems with hardening nonlinearity exhibit supercritical Hopf bifurcation when the flow velocity exceeds a critical velocity leading to self-sustaining large amplitude limit cycle oscillations known as flutter. This study investigates the effects of irregular fluctuations in the flow on the dynamical stability characteristics of a two-degree-of-freedom pitch-plunge aeroelastic system with hardening nonlinearity. Dynamical or D-bifurcations are investigated through the computation of the largest Lyapunov exponent, while phenomenological or P-bifurcation analysis is carried out by examining the structure of the joint probability density function of the response quantities and their instantaneous time derivatives. The qualitative nature of P-bifurcation analysis makes it difficult to pinpoint the regimes of different response dynamics. In the light of this difficulty, a quantitative analysis using the Shannon entropy measure has been undertaken to quantify the P-bifurcation regime. This regime is shown to be coincident with the intermittency regime observed in the response time histories prior to flutter oscillations in fluctuating flows.

Keywords

Aeroelastic flutter Random flows Hopf bifurcation Intermittency D-bifurcation P-bifurcation 

References

  1. 1.
    Alighanbari, H., Price, S.J.: The post-hopf-bifurcation response of an airfoil in incompressible two-dimensional flow. Nonlinear Dyn. 10, 381–400 (1996)CrossRefGoogle Scholar
  2. 2.
    Andrianne, T., Dimitriadis, G.: Experimental analysis of the bifurcation behavior of a bridge deck undergoing across-wind galloping. In: Proceedings of the 8th international conference on structural dynamics, EURODYN, Leuven. ISBN 978-90-760-1931-4 (2011)Google Scholar
  3. 3.
    Arecchi, F., Badii, R., Politi, A.: Generalized multistability and noise-induced jumps in a nonlinear dynamical system. Phys. Rev. A 32(1), 402 (1985)CrossRefGoogle Scholar
  4. 4.
    Ariaratnam, A.: Some illustrative examples of stochastic bifurcation. In: Thompson, J.M.T., Bishop, S.R. (eds.) Nonlinearity and Chaos in Engineering Dynamics, chap. 21, pp. 265–274. Wiley (1994)Google Scholar
  5. 5.
    Arnold, L.: Random Dynamical Systems. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Arnold, L., Crauel, H.: Random dynamical systems. Lecture Notes in Mathematica 1486, 1–22 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Baxendale, P.H.: Asymptotic behaviour of stochastic flows of diffeomorphisms: two case studies. Probab. Theory Relat. Fields 73(1), 51–85 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Crauel, H., Flandoli, F.: Additive noise destroys a pitchfork bifurcation. J. Dyn. Differ. Equ. 10(2), 259–274 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daems, D., Nicolis, G.: Entropy production and phase space volume contraction. Phys. Rev. E 59, 4000–4006 (1999).  https://doi.org/10.1103/PhysRevE.59.4000 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dowell, E., Tang, D.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40, 1697–707 (2002)CrossRefGoogle Scholar
  11. 11.
    Fung, Y.: An Introduction to the Theory of Aeroelasticity. Wiley, New York (1955)Google Scholar
  12. 12.
    Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)zbMATHGoogle Scholar
  13. 13.
    Hoblit, F.M.: Gust Loads on Aircraft: Concepts and Applications. AIAA, Washington, DC (1988)CrossRefGoogle Scholar
  14. 14.
    Horsthemke, W., Lefever, R.: Noise-induced transitions in physics, chemistry, and biology. In: Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology, pp. 164–200 (1984)Google Scholar
  15. 15.
    Kim, S., Park, S.H., Ryu, C.S.: Noise-enhanced multistability in coupled oscillator systems. Phys. Rev. Lett. 78(9), 1616 (1997)CrossRefGoogle Scholar
  16. 16.
    Korbahti, B., Kagambage, E., Andrianne, T., Razak, N., Dimitriadis, G.: Subcritical, nontypical and period-doubling bifurcations of a delta wing in a low speed wind tunnel. J. Fluids Struct. 27, 408–426 (2011)CrossRefGoogle Scholar
  17. 17.
    Kumar, P.: Investigations into the bifurcation of stochastically excited nonlinear oscillators. Ph.D. thesis, Indian Institute of Technology Madras (2017)Google Scholar
  18. 18.
    Kumar, P., Narayanan, S., Gupta, S.: Finite element solution of Fokker–Planck equation of nonlinear oscillators subjected to colored non-Gaussian noise. Probab. Eng. Mech. 38, 143–155 (2014)CrossRefGoogle Scholar
  19. 19.
    Kumar, P., Narayanan, S., Gupta, S.: Investigations on the bifurcation of a noisy Duffing-van der Pol oscillator. Probab. Eng. Mech. 45, 70–86 (2016)CrossRefGoogle Scholar
  20. 20.
    Kumar, P., Narayanan, S., Gupta, S.: Stochastic bifurcations in a vibro-impact Duffing-van der Pol oscillator. Nonlinear Dynamics 85, 1–14 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lee, B., Price, S., Wong, Y.: Nonlinear aeroelastic analysis of airfoils: bifurcations and chaos. Prog. Aerosp. Sci. 35, 205–334 (1999)CrossRefGoogle Scholar
  22. 22.
    Lee, B.H.K., Jiang, L.: Flutter of an airfoil with cubic restoring force. J. Fluids Struct. 13, 75–101 (1999)CrossRefGoogle Scholar
  23. 23.
    Masud, A., Bergman, L.A.: Application of multi-scale finite element methods to the solution of the Fokker–Planck equation. Comput. Methods Appl. Mech. Eng. 194(12), 1513–1526 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc 19(2), 197–231 (1968)MathSciNetGoogle Scholar
  25. 25.
    Phillis, Y.: Entropy stability of continuous dynamic system. Int. J. Control 35, 1982 (1982)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Poirel, D.: Random dynamics of a structurally nonlinear airfoil in turbulent flow. Ph.D. thesis, McGill University, Montreal (2001)Google Scholar
  27. 27.
    Poirel, D., Harris, Y., Benaissa, A.: Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate reynolds numbers. J. Fluids Struct. 24, 700–719 (2008)CrossRefGoogle Scholar
  28. 28.
    Poirel, D., Price, S.: Bifurcation characteristics of a two-dimensional structurally nonlinear airfoil in turbulent flow. Nonlinear Dyn. 48, 423–435 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Poirel, D.C., Price, S.J.: Post-instability behavior of a structurally nonlinear airfoil in longitudinal turbulence. J. Aircr. 34(5), 619–626 (1997)CrossRefGoogle Scholar
  30. 30.
    Poirel, D.C., Price, S.J.: Structurally nonlinear fluttering airfoil in turbulent flow. AIAA J. 39(10), 1960–1968 (2001)CrossRefGoogle Scholar
  31. 31.
    Ramasubramanian, K., Sriram, M.: A comparative study of computation of Lyapunov spectra with different algorithms. Physica D 139(1), 72–86 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sarkar, S., Bijil, H.: Nonlinear aeroelastic behavior of an oscillating airfoil during stall induced vibration. J. Fluids Struct. 24, 757–777 (2008)CrossRefGoogle Scholar
  33. 33.
    Schenk-Hoppé, K.R.: Bifurcation scenarios of the noisy Duffing-van der Pol oscillator. Nonlinear Dyn. 11(3), 255–274 (1996)Google Scholar
  34. 34.
    Schuster, H., Just, W.: Deterministic chaos: an introduction. Wiley, Weinheim (2006)zbMATHGoogle Scholar
  35. 35.
    Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Sreenivasan, K., Meneveau, C.: The fractal facets of turbulence. J. Fluid Mech. 173, 357–386 (1986)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Sreenivasan, K., Meneveau, C.: Singularities of the equations of fluid motion. Phys. Rev. A 38, 6287–6295 (1988)CrossRefGoogle Scholar
  38. 38.
    Venkatramani, J., Krishna Kumar, S., Gupta, S., Sarkar, S.: Physical mechanism of intermittency route to aeroelastic flutter. J. Fluids Struct. 75, 9–26 (2017)CrossRefGoogle Scholar
  39. 39.
    Venkatramani, J., Nair, V., Sujith, R., Gupta, S., Sarkar, S.: Precursors to flutter instability by an intermittency route: a model free approach. J. Fluids Struct. 61, 376–391 (2016)CrossRefGoogle Scholar
  40. 40.
    Venkatramani, J., Nair, V., Sujith, R., Gupta, S., Sarkar, S.: Multi-fractality in aeroelastic response as a precursor to flutter. J. Sound Vib. 386, 390–406 (2017)CrossRefGoogle Scholar
  41. 41.
    Wedig, W.: Dynamic stability of beams under axial forces: Lyapunov exponents for general fluctuating loads. In: Structural Dynamics, pp. 141–148 (1990)Google Scholar
  42. 42.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zhao, D., Zhang, Q., Tan, Y.: Random flutter of a 2-DOF nonlinear airfoil in pitch and plunge with freeplay in pitch. Nonlinear Dyn. 58(4), 643–654 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MechanicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Aerospace EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations