Skip to main content
Log in

Nonlinear dynamic characteristics of a micro-vibration fluid viscous damper

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study is concerned with the nonlinear dynamic characteristics of a micro-vibration fluid viscous damper used in a satellite. When a control moment gyroscope is working, it produces micro-vibrations, which is a disadvantage for imaging equipment. Taking a single-tube micro-vibration fluid viscous damper as our research subject, a nonlinear dynamic model of the micro-vibration fluid viscous damper under harmonic excitation is proposed. Then, the analytical form of the pressure gradient force is derived. Considering the entrance effect in the orifice, the nonlinear elastic force and nonlinear damping force are analyzed. The results reveal that if the entrance effect is not considered, the elastic force and damping force are linear forces. When the entrance effect is considered, the damper has a nonlinear elastic force and a nonlinear damping force. These nonlinear forces are related to the orifice length, diameter, fluid viscosity, excitation amplitude and frequency. In the low-frequency domain, the differences between the two cases are small, while in the high-frequency domain, they are considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

Similar content being viewed by others

References

  1. Kamesh, D., Pandiyan, R., Ghosal, A.: Modeling, design and analysis of low frequency platform for attenuating micro vibration in spacecraft. J. Sound Vib. 329(17), 3431–3450 (2010)

    Article  Google Scholar 

  2. Davis, P., Cunningham, D., Harrell, J.: Advanced 1.5 Hz passive viscous isolation system. In: 35th Structures, Structural Dynamics, and Materials Conference, vol. 32, No. 5Suppl, pp. 2655–2665 (2013)

  3. Davis, L.P., Carter, D.R., Hyde, T.T.: Second-generation hybrid D-strut. In: Proceedings of SPIE, pp. 161–175 (1995)

  4. Stabile, A., Aglietti, G.S., Richardson, G.: Electromagnetic damper design using a multiphysics approach. Proc. SPIE. 9431(20), 1–9 (2015)

    Google Scholar 

  5. Stabile, A., Aglietti, G.S., Richardson, G., Smet, G.: Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro vibration. J. Sound Vib. 386, 38–49 (2017)

    Article  Google Scholar 

  6. Stabile, A., Aglietti, G.S., Richardson, G., Smet, G.: A 2-collinear-DoF strut with embedded negative-resistance electromagnetic shunt dampers for spacecraft micro vibration. Smart Mater. Struct. 26(4), 045031 (2017)

    Article  Google Scholar 

  7. Lee, D.-O., Park, G., Han, J.-H.: Experimental study on on-orbit and launch environment vibration isolation performance of a vibration isolator using bellows and viscous fluid. Aerosp. Sci. Technol. 45, 1–9 (2015)

    Article  Google Scholar 

  8. Lee, D.-O., Park, G., Han, J.-H.: Hybrid isolation of micro vibrations induced by reaction wheels. J. Sound Vib. 363, 1–17 (2016)

    Article  Google Scholar 

  9. Wang, J., Zhao, S., Wu, D.: Performance of a type of nonlinear fluid micro vibration isolators. J. Aerosp. Eng. 28(6), 04015002 (2015)

    Article  Google Scholar 

  10. Shi, W.-K., Qian, C., Chen, Z.-Y., Cao, Y., Zhang, H.: Modeling and dynamic properties of a four-parameter Zener model vibration isolator. Shock Vib. 2016, 1–16 (2016)

    Google Scholar 

  11. Narkhede, D.I., Sinha, R.: Behavior of nonlinear fluid viscous dampers for control of shock vibrations. J. Sound Vib. 333(1), 80–98 (2014)

    Article  Google Scholar 

  12. Hou, C.-Y.: Behavior explanation and a new model for nonlinear viscous fluid dampers with a simple annular orifice. Arch. Appl. Mech. 82(1), 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peng, Z.K., Lang, Z.Q., Zhao, L., Billings, S.A., Tomlinson, G.R., Guo, P.F.: The force transmissibility of MDOF structures with a non-linear viscous damping device. Int. J. Nonlinear Mech. 46(10), 1305–1314 (2011)

    Article  Google Scholar 

  14. Wolfe, R.W., Yun, H.B., Masri, S., Tasbihgoo, F., Benzoni, G.: Fidelity of reduced-order models for large-scale nonlinear orifice viscous dampers. Struct. Control Health Monit. 15(8), 1143–1163 (2008)

    Article  Google Scholar 

  15. Farjoud, A., Ahmadian, M., Craft, M., Burke, W.: Nonlinear modeling and experimental characterization of hydraulic dampers: effects of shim stack and orifice parameters on damper performance. Nonlinear Dyn. 67(2), 1437–1456 (2011)

    Article  Google Scholar 

  16. Hou, C.-Y.: Fluid dynamics and behavior of nonlinear viscous fluid dampers. J. Struct. Eng. 134(1), 56–63 (2008)

    Article  Google Scholar 

  17. Narkhede, D.I., Sinha, R.: Influence of shock impulse characteristics on vibration control using nonlinear fluid viscous dampers. J. Vib. Control 23(9), 1463–1479 (2015)

    Article  MathSciNet  Google Scholar 

  18. Shum, K.M.: Tuned vibration absorbers with nonlinear viscous damping for damped structures under random load. J. Sound Vib. 346, 70–80 (2015)

    Article  Google Scholar 

  19. Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems. J. Sound Vib. 323(1–2), 352–365 (2009)

    Article  Google Scholar 

  21. Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79(4), 2325–2332 (2014)

    Article  MathSciNet  Google Scholar 

  22. Goldasz, J., Alexandridis, A.A.: Medium- and high-frequency analysis of magnetorheological fluid dampers. J. Vib. Control 18(14), 2140–2148 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Basic Research Program of China (No. 2013CB733004) and National Defense Basic Research Plan of China (No. A0320110016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Zhao, Y. & Ma, W. Nonlinear dynamic characteristics of a micro-vibration fluid viscous damper. Nonlinear Dyn 92, 1167–1184 (2018). https://doi.org/10.1007/s11071-018-4116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4116-2

Keywords

Navigation