Skip to main content
Log in

Abundant lump and lump–kink solutions for the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By utilizing the Hirota’s bilinear form and symbolic computation, abundant lump solutions and lump–kink solutions of the new (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation are derived in this work. Meanwhile, the interaction between lump solutions and the exponential function is also investigated. The dynamic properties of these obtained lump and interaction solutions are analyzed and described in figures by selecting appropriate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zeng, Z.F., Liu, J.G., Nie, B.: Multiple-soliton solutions, soliton-type solutions and rational solutions for the, (3+1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dyn. 86(1), 667–675 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tang, Y.N., Tao, S.Q., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Nonlinear Dyn. 89, 429–442 (2017)

    Article  Google Scholar 

  3. Chen, M.D., Li, X., Wang, Y., Li, B.: A pair of resonance stripe solitons and lump solutions to a reduced (3+1)-dimensional nonlinear evolution equation. Commun. Theor. Phys. 67, 595C600 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zeng, Z.F., Liu, J.G., Jiang, Y., Nie, B.: Transformations and soliton solutions for a variable-coefficient nonlinear schrödinger equation in the dispersion decreasing fiber with symbolic computation. Fundamenta Informaticae 145(2), 207–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Qawasmeh, A., Alquran, M.: Reliable study of some new fifth-order nonlinear equations by means of \((G^{\prime }/G)\)-expansion method and rational sine–cosine method. Appl. Math. Sci. 8(120), 5985–5994 (2014)

    Google Scholar 

  6. Lü, X., Wang, J.P., Lin, F.H., Zhou, X.W.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3942-y (2017)

  7. Lü, X., Ma, W.X., Chen, S.T., Chaudry, M.K.: A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. 32, 241–261 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88(88), 177–184 (2014)

    Article  Google Scholar 

  11. İsmail, Aslan: Constructing rational and multi-wave solutions to higher order nees via the exp-function method. Math. Meth. Appl. Sci 34(8), 990–995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biswas, A., Mirzazadeh, M., Eslami, M., Milovic, D., Belic, M.: Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz 68(11–12), 525–530 (2014)

    Google Scholar 

  13. Wazwaz, A.M.: Multiple soliton solutions and multiple singular soliton solutions for (2+1)-dimensional shallow water wave equations. Phys. Lett. A. 373, 2927–2930 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wazwaz, A.M.: Two-mode fifth-order kdv equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wazwaz, A.M.: Compact and noncompact physical structures for the zk-bbm equation. Appl. Math. Comput. 169(1), 713–725 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Wazwaz, A.M.: Multiple-soliton solutions for extended-dimensional Jimbo–Miwa equations. Appl. Math. Lett. 64, 21–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. El-Sabbagh, M.F., Ali, A.T.: Nonclassical symmetries for nonlinear partial differential equations via compatibility. Commun. Theor. Phys. 56, 611–616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Analytical spatiotemporal localizations for the generalized (3 + 1)-dimensional nonlinear Schrödinger equation. Opt. Lett. 35, 1437–1439 (2010)

    Article  Google Scholar 

  20. Liu, J.G., Du, J.Q., Zeng, Z.F., Ai, G.P.: Exact periodic cross-kink wave solutions for the new (2+1)-dimensional Kdv equation in fluid flows and plasma physics. Chaos 26(10), 989–1002 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. El-Tantawy, S.A., Moslem, W.M., Schlickeiser, R.: Ion-acoustic dark solitons collision in an ultracold neutral plasma. Phys. Scr. 90(8), 085606 (2015)

    Article  Google Scholar 

  22. Gorshkov, K.A., Pelinovsky, D.E., Stepanyants, Y.A.: Normal and anomalous scattering, formation and decay of bound states of two-dimensional solitons described by the Kadomtsev-Petviashvili equation. JETP 77(2), 237–245 (1993)

    Google Scholar 

  23. Manakov, S.V., Zakhorov, V.E., Bordag, L.A., et al.: Twodimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. 63, 205–206 (1977)

    Article  Google Scholar 

  24. Sun, H.Q., Chen, A.H.: Lump and lump–kink solutions of the (3+1)-dimensional Jimbo–Miwa and two extended Jimbo–Miwa equations. Appl. Math. Lett. 68, 55–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, J.Y., Ma, W.X.: Abundant lump-type solutions of the Jimbo–Miwa equation in (3+1)-dimensions. Comput. Math. Appl. 73, 220–225 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, J.B., Ma, W.X.: Mixed lump–kink solutions to the BKP equation. Comput. Math. Appl. 74, 591–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, L.L., Chen, Y.: Lump solutions and interaction phenomenon for (2+1)-dimensional Sawada–Kotera equation. Commun. Theor. Phys. 67(5), 473–478 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, J.P., Sun, Y.L.: Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dyn. 87(4), 1–9 (2016)

    MathSciNet  Google Scholar 

  29. Tan, W., Dai, Z.D.: Spatiotemporal dynamics of lump solution to the (1 + 1)-dimensional Benjamin–Ono equation. Nonlinear Dyn. 89, 2723C2728 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wang, C.J.: Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn. 87, 2635–2642 (2017)

    Article  MathSciNet  Google Scholar 

  31. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86(1), 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear. Sci. 31, 40–46 (2016)

    Article  MathSciNet  Google Scholar 

  34. Zhao, H.Q., Ma, W.X.: Mixed lump–kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhang, H.Q., Ma, W.X.: Lump solutions to the (2=1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 87(4), 2305–2310 (2017)

    Article  MathSciNet  Google Scholar 

  36. Yang, J.Y., Ma, W.X., Qin, Z.: Lump and lump–soliton solutions to the (2+1)-dimensional ITO equation. Anal. Math. Phys. https://doi.org/10.1007/s13324-017-0181-9 (2017)

  37. Lü, Z., Chen, Y.: Construction of rogue wave and lump solutions for nonlinear evolution equations. Eur. Phys. J. B 88, 187–191 (2015)

    Article  MathSciNet  Google Scholar 

  38. Ma, W.X.: Lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation. Int. J. Nonlinear Sci. Num. 17, 355–359 (2016)

    MathSciNet  Google Scholar 

  39. Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dynamics. 84(2), 1107–1112 (2016)

    Article  MathSciNet  Google Scholar 

  40. Ma, W.X., Abdeljabbar, A.: A bilinear bäcklund transformation of a (3+1)-dimensional generalized KP equation. Appl. Math. Lett. 25(10), 1500–1504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu, J.G., Tian, Y., Zeng, Z.F.: New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation in multi-temperature electron plasmas. AIP Adv. 7, 105013 (2017). https://doi.org/10.1063/1.4999913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan He.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Project supported by National Natural Science Foundation of China (Grant No. 81260644), Special project of science and Technology Department of Jiangxi provincial science and Technology Department (Grant No. 20151BBG70031) and Science and technology project of Jiangxi provincial health and Family Planning Commission (20175537).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JG., He, Y. Abundant lump and lump–kink solutions for the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn 92, 1103–1108 (2018). https://doi.org/10.1007/s11071-018-4111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4111-7

Keywords

Navigation