Nonlinear Dynamics

, Volume 92, Issue 3, pp 1091–1102 | Cite as

Aperiodically intermittent control for synchronization of switched complex networks with unstable modes via matrix \(\varvec{\omega }\)-measure approach

  • Liyan Cheng
  • Xiangyong Chen
  • Jianlong Qiu
  • Jianquan Lu
  • Jinde Cao
Original Paper


The study, by using aperiodically intermittent pinning control, is to synchronize switched delayed complex networks with unstable subsystems. Matrix \(\omega \)-measure and mode-dependent average dwell time method are used to achieve globally exponential synchronization for such system. By designing the useful switching rule and control scheme, we obtain the novel synchronization criteria, which improve the conventional results. Finally, simulation analysis demonstrates the advantages of proposed innovations.


Globally exponential synchronization (GES) Switched complex networks Aperiodically intermittent pinning control (AIPC) \(\omega \)-Measure Mode-dependent average dwell time (MDADT) 



The contribution of all authors is equal. Thanks to Professor Fawaz Alsaadi and Doctor Xinli Shi for their help in language checking and theoretical analysis. This study was supported by the National Natural Science Foundation of China under Grant Nos. 61403179, 61273012 and 61573102, the Natural Science Foundation of Jiangsu Province of China under Grant no. BK20170019, the Key Research and Development Project of Shandong Province of China under Grant no. 2017GGX10143, the Key Research and Development Project of Linyi City of China under Grant no. 2017GGH009, the Applied Mathematics Enhancement Program of Linyi University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Strogatz, S.: Exploring complex networks. Nature 410, 268–276 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Yang, X., Cao, J., Lu, J.: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans. Circuits Syst. I Regul. Pap. 60(2), 363–376 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Rakkiyappan, R., Dharani, S., Zhu, Q.: Synchronization of reaction–diffusion neural networks with time-varying delays via stochastic sampled-data controller. Nonlinear Dyn. 79(1), 485–500 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, P., Lv, J., Ogorzalek, M.: Global relative parameter sensitivities of the feed-forward loops in genetic networks. Neurocomputing 78(1), 155–165 (2012)CrossRefGoogle Scholar
  5. 5.
    Mirollo, R., Strogatz, S.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rakkiyappan, R., Latha, V., Zhu, Q., Yao, Z.: Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal. Hybrid Syst. 24, 28–44 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wei, G., Jia, Y.: Synchronization-based image edge detection. Europhys. Lett. 59(6), 814 (2002)CrossRefGoogle Scholar
  8. 8.
    Xie, Q., Chen, G., Bollt, E.: Hybrid chaos synchronization and its application in information processing. Math. Comput. Model. 35(1), 145–163 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yu, W., Cao, J., Lu, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM J. Appl. Dyn. Syst. 7(1), 108–133 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feng, J., Tang, Z., Zhao, Y.: Cluster synchronisation of non-linearly coupled Lur’e networks with identical and non-identical nodes and an asymmetrical coupling matrix. IET Control Theory Appl. 7(18), 2117–2127 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rakkiyappan, R., Dharani, S., Zhu, Q.: Stochastic sampled-data \(H_{\infty }\) synchronization of coupled neutral-type delay partial differential systems. J. Frankl. Inst. 352(10), 4480–4502 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lu, J., Ho, D.: Globally exponential synchronization and synchronizability for general dynamical networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(2), 350–361 (2010)CrossRefGoogle Scholar
  13. 13.
    He, W., Cao, J.: Exponential synchronization of hybrid coupled networks with delayed coupling. IEEE Trans. Neural Netw. 21(4), 571–583 (2010)CrossRefGoogle Scholar
  14. 14.
    Lu, J., Ho, D., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yang, X., Cao, J., Lu, J.: Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control. IEEE Trans. Circuits Syst. I Regul. Pap. 59(2), 371–384 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lu, J., Wang, Z., Cao, J., Ho, D., Kurths, J.: Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int. J. Bifurc. Chaos 22(7), 1250176 (2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lu, J., Kurths, J., Cao, J., Mahdavi, N., Huang, C.: Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 285–292 (2012)CrossRefGoogle Scholar
  18. 18.
    Lu, J., Ding, C., Lou, J., Cao, J.: Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. J. Frankl. Inst. 352(11), 5024–5041 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lu, J., Zhong, J., Huang, C., Cao, J.: On pinning controllability of Boolean control networks. IEEE Trans. Autom. Control 61(6), 1658–1663 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chen, X., Ju, H., Cao, J., Qiu, J.: Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl. Math. Comput. 308, 161–173 (2017)MathSciNetGoogle Scholar
  21. 21.
    Qi, W., Ju, H., Cheng, J., Kao, Y.: Robust stabilization for nonlinear time-delay semi-Markovian jump systems via sliding mode control. IET Control Theory Appl. 11(10), 1504–1513 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chen, X., Cao, J., Ju, H., Qiu, J.: Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273, 9–21 (2018)CrossRefGoogle Scholar
  23. 23.
    Lu, J., Cao, J.: Adaptive synchronization of uncertain dynamical networks with delayed coupling. Nonlinear Dyn. 53(1–2), 107–115 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yu, W., DeLellis, P., Chen, G., Bernardo, M., Kurths, J.: Distributed adaptive control of synchronization in complex networks. IEEE Trans. Autom. Control 57(8), 2153–2158 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos Interdiscip. J. Nonlinear Sci. 19(1), 013120 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, X., Chen, T.: Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2396–2407 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, W., Li, C., Huang, T., Xiao, M.: Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural Netw. 71, 105–111 (2015)CrossRefGoogle Scholar
  28. 28.
    Qiu, J., Cheng, L., Chen, X., Lu, J., He, H.: Semi-periodically intermittent control for synchronization of switched complex networks: a mode-dependent average dwell time approach. Nonlinear Dyn. 83(3), 1757–1771 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, M., Jiang, H., Hu, C.: Synchronization of hybrid-coupled delayed dynamical networks via aperiodically intermittent pinning control. J. Frankl. Inst. 353(12), 2722–2742 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, J.: Synchronization of delayed complex dynamical network with hybrid-coupling via aperiodically intermittent pinning control. J. Frankl. Inst. 354(4), 1833–1855 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    He, W., Cao, J.: Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn. 55(1), 55–65 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Cao, J., Wan, Y.: Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw. 53(5), 165–172 (2014)CrossRefzbMATHGoogle Scholar
  33. 33.
    Lian, J., Zhao, J.: Adaptive variable structure control for uncertain switched delay systems. Circuits Syst. Signal Process. 29(6), 1089–1102 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sun, Y., Qin, S.: Stability of networked control systems with packet dropout: an average dwell time approach. IET Control Theory Appl. 5(1), 47–53 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, W., Tang, Y., Miao, Q., Wei, D.: Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects. IEEE Trans. Neural Netw. Learn. Syst. 24(8), 1316 (2013)CrossRefGoogle Scholar
  36. 36.
    Lian, J., Peng, S., Feng, Z.: Passivity and passification for a class of uncertain switched stochastic time-delay systems. IEEE Trans. Cybern. 43(1), 3–13 (2013)CrossRefGoogle Scholar
  37. 37.
    Liberzon, D., Morse, A.: Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19(5), 59–70 (1999)CrossRefzbMATHGoogle Scholar
  38. 38.
    Lin, H., Antsaklis, P.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zhang, L., Gao, H.: Asynchronously switched control of switched linear systems with average dwell time. Automatica 46(5), 953–958 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lu, J., Ho, D., Wu, L.: Exponential stabilization of switched stochastic dynamical networks. Nonlinearity 22, 889–911 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Qi, W., Ju, H., Cheng, J., Kao, Y., Gao, X.: Exponential stability and \(L_{1}\)-gain analysis for positive time-delay Markovian jump systems with switching transition rates subject to average dwell time. Inf. Sci. 428, 224–234 (2018)CrossRefGoogle Scholar
  42. 42.
    Zhao, X., Zhang, L., Shi, P., Liu, M.: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57(7), 1809–1815 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Wang, B., Zhang, H., Wang, G., Dang, C., Zhong, S.: Asynchronous control of discrete-time impulsive switched systems with mode-dependent average dwell time. ISA Trans. 53(2), 367–372 (2014)CrossRefGoogle Scholar
  44. 44.
    Wang, B., Zhu, Q.: Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems. Syst. Control Lett. 105, 55–61 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Li, X., Lin, X., Li, S., Zou, Y.: Finite-time stability of switched nonlinear systems with finite-time unstable subsystems. J. Frankl. Inst. 352(3), 1192–1214 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Huang, C., Cao, J., Cao, J.: Stability analysis of switched cellular neural networks: a mode-dependent average dwell time approach. Neural Netw. 82, 84–99 (2016)CrossRefGoogle Scholar
  47. 47.
    Zheng, Q., Zhang, H.: \(H_{\infty }\) filtering for a class of nonlinear switched systems with stable and unstable subsystems. Signal Process. 141, 240–248 (2017)CrossRefGoogle Scholar
  48. 48.
    Cao, J., Alofi, A., Almazrooei, A., Elaiw, A.: Synchronization of switched interval networks and applications to chaotic neural networks. Abstr. Appl. Anal. 2013, 940573 (2013)MathSciNetGoogle Scholar
  49. 49.
    Li, N., Cao, J.: Intermittent control on switched networks via \(\omega \)-matrix measure method. Nonlinear Dyn. 77(4), 1363–1375 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Song, Q., Cao, J., Liu, F.: Pinning-controlled synchronization of hybrid-coupled complex dynamical networks with mixed time-delays. Int. J. Robust Nonlinear Control 22(6), 690–706 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 52.
    Zhu, Q.: Razumikhin-type theorem for stochastic functional differential equations with L\(\acute{e}\)vy noise and Markov switching. Int. J. Control 90(8), 1703–1712 (2017)CrossRefzbMATHGoogle Scholar
  52. 53.
    Qi, W., Ju, H., Cheng, J., Kao, Y., Gao, X.: Anti-windup design for stochastic Markovian switching systems with mode-dependent time-varying delays and saturation nonlinearity. Nonlinear Anal. Hybrid Syst. 26, 201–211 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of International Trade and EconomicsDongbei University of Finance and EconomicsDalianChina
  2. 2.School of Automation and Electrical Engineering, and Key Laboratory of Complex Systems and Intelligent Computing in Universities of ShandongLinyi UniversityLinyiChina
  3. 3.School of MathematicsSoutheast UniversityNanjingChina
  4. 4.School of Electrical EngineeringNantong UniversityNantongChina
  5. 5.School of Mathematical SciencesShandong Normal UniversityJi’nanChina
  6. 6.Department of Information TechnologyKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations