Skip to main content
Log in

Tracking particles in flows near invariant manifolds via balance functions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Particle moving inside a fluid near, and interacting with, invariant manifolds is a common phenomenon in a wide variety of applications. One elementary question is whether we can determine once a particle has entered a neighbourhood of an invariant manifold, when it leaves again. Here we approach this problem mathematically by introducing balance functions, which relate the entry and exit points of a particle by an integral variational formula. We define, study, and compare different natural choices for balance functions and conclude that an efficient compromise is to employ normal infinitesimal Lyapunov exponents. We apply our results to two different model flows: a regularized solid-body rotational flow and the asymmetric Kuhlmann–Muldoon model developed in the context of liquid bridges. To test the balance function approach, we also compute the motion of a finite size particle in an incompressible liquid near a shear-stress interface (invariant wall), using fully resolved numerical simulation. In conclusion, our theoretically developed framework seems to be applicable to models as well as data to understand particle motion near invariant manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aulbach, B., Rasmussen, M., Siegmund, S.: Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete Contin. Dyn. Syst. 15(2), 579–597 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49(1), 55–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balasuriya, S., Kalampattel, R., Ouellette, N.T.: Hyperbolic neighbourhoods as organizers of finite-time exponential stretching. J. Fluid Mech. 807, 509–545 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, A.: On finite-time hyperbolicity. Commun. Pure Appl. Anal. 10(3), 963–981 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger, A., Doan, T.S., Siegmund, S.: A definition of spectrum for differential equations on finite time. J. Differ. Equ. 246, 1098–1118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow–Fast Dynamical Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Branicki, M., Wiggins, S.: An adaptive method for computing invariant manifolds in non-autonomous, three-dimensional dynamical systems. Phys. D 238(15), 1625–1657 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Budišić, M., Siegmund, S., Son, D.T., Mezić, I.: Mesochronic classification of trajectories in incompressible 3D vector fields over finite times. Discrete Contin. Dyn. Syst. S 9(4), 923–958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarke, C., Carswell, B.: Principles of Astrophysical Fluid Dynamics. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  10. Cox, R.G., Matthews, S.K.: The lateral migration of solid particles in a laminar flow near a plane. Int. J. Multiph. Flow 3(3), 201–222 (1977)

    Article  MATH  Google Scholar 

  11. Dijkstra, H.A., Katsman, C.A.: Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams. Geophys. Astrophys. Fluid Dyn. 83(3), 195–232 (1997)

    Article  MathSciNet  Google Scholar 

  12. Doan, T.S., Karrasch, D., Nguyen, T.Y., Siegmund, S.: A unified approach to finite-time hyperbolicity which extends finite-time lyapunov exponents. J. Differ. Equ. 252, 5535–5554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duc, L.H., Siegmund, S.: Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals. Int. J. Bifurc. Chaos 18(3), 641–674 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumortier, F., Roussarie, R.: Canard Cycles and Center Manifolds, volume 121 of Memoirs American Mathematical Society. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  15. Ershkov, S.V.: About existence of stationary points for the Arnold–Beltrami–Childress (ABC) flow. Appl. Math. Comput. 276, 379–383 (2016)

    MathSciNet  Google Scholar 

  16. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–225 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Froyland, G., Padberg, K., England, M.H., Treguier, A.M.: Detection of coherent oceanic structures via transfer operators. Phys. Rev. Lett. 98(22), 224503 (2007)

    Article  Google Scholar 

  19. Gogate, P.R., Beenackers, A.C.M., Pandit, A.B.: Multiple-impeller systems with a special emphasis on bioreactors: a critical review. Biochem. Eng. J. 6(2), 109–144 (2000)

    Article  Google Scholar 

  20. Green, M.A., Rowley, C.W., Haller, G.: Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  22. Haber, S.: A spherical particle moving slowly in a fluid with a radially varying viscosity. SIAM J. Appl. Math. 67(1), 279–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys. D 149(4), 248–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Phys. D 240(7), 574–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haller, G.: Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137–162 (2015)

    Article  MathSciNet  Google Scholar 

  26. Haller, G., Sapsis, T.: Localized instability and attraction along invariant manifolds. SIAM J. Appl. Dyn. Syst. 9(2), 611–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D 147(3), 352–370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  29. Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  30. Hofmann, E., Kuhlmann, H.C.: Particle accumulation on periodic orbits by repeated free surface collisions. Phys. Fluids 23, 0721106 (2011)

    Article  Google Scholar 

  31. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems (Montecatini Terme, 1994), volume 1609 of Lecture Notes in Mathematics, pp. 44–118. Springer (1995)

  32. Joseph, G.G., Zenit, R., Hunt, M.L., Rosenwinkel, A.M.: Particle-wall collisions in a viscous fluid. J. Fluid Mech. 433, 329–346 (2001)

    Article  MATH  Google Scholar 

  33. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Karrasch, D.: Linearization of hyperbolic finite-time processes. J. Differ. Equ. 254, 256–282 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. American Mathematical Society, Providence (2011)

    Book  MATH  Google Scholar 

  36. Kosinski, P., Kosinska, A., Hoffmann, A.C.: Simulation of solid particles behaviour in a driven cavity flow. Powder Technol. 191(3), 327–339 (2009)

    Article  Google Scholar 

  37. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuehn, C.: Normal hyperbolicity and unbounded critical manifolds. Nonlinearity 27(6), 1351–1366 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuehn, C.: Multiple Time Scale Dynamics, p. 814. Springer, Berlin (2015)

    MATH  Google Scholar 

  40. Kuehn, C.: Uncertainty transformation via Hopf bifurcation in fast–slow systems. Proc. R. Soc. A 473, 20160346 (2017)

    Article  MathSciNet  Google Scholar 

  41. Kuhlmann, H.C.: Thermocapillary Convection in Models of Crystal Growth, volume 152 of Springer Tracts in Modern Physics. Springer, Berlin (1999)

    Google Scholar 

  42. Kuhlmann, H.C., Muldoon, F.H.: Comment on “Ordering of small particles in one-dimensional coherent structures by time-periodic flows”. Phys. Rev. Lett. 108, 249401 (2012)

    Article  Google Scholar 

  43. Kuhlmann, H.C., Muldoon, F.H.: Particle-accumulation structures in periodic free-surface flows: inertia versus surface collisions. Phys. Rev. E 85, 046310 (2012)

    Article  Google Scholar 

  44. Kuhlmann, H.C., Muldoon, F.H.: Comment on “Synchronization of finite-size particles by a traveling wave in a cylindrical flow” [Phys. Fluids 25, 092108 (2013)]. Phys. Fluids 26(9), 099101 (2014)

    Article  Google Scholar 

  45. Kuske, R.: Probability densities for noisy delay bifurcation. J. Stat. Phys. 96(3), 797–816 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lekien, F., Ross, S.D.: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20(1), 017505 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, X., Xu, G., Gao, S.: Micro fluidized beds: wall effect and operability. Chem. Eng. J. 137(2), 302–307 (2008)

    Article  Google Scholar 

  48. Luo, X., Maxey, M.R., Karniadakis, G.E.: Smoothed profile method for particulate flows: error analysis and simulations. J. Comput. Phys. 228(5), 1750–1769 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mauroy, A., Mezic, I., Moehlis, J.: Isostables, isochrons, and Koopman spectrum for the action-angle reduction of stable fixed point dynamics. Phys. D 261, 19–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)

    Article  MATH  Google Scholar 

  51. McCave, I.N.: Size spectra and aggregation of suspended particles in the deep ocean. Deep Sea Res. A 31(4), 329–352 (1984)

    Article  Google Scholar 

  52. Melnikov, D.E., Pushkin, D.O., Shevtsova, V.M.: Synchronization of finite-size particles by a traveling wave in a cylindrical flow. Phys. Fluids 25(9), 092108 (2013)

    Article  Google Scholar 

  53. Mezić, I., Loire, S., Fonoberov, V.A., Hogan, P.: A new mixing diagnostic and Gulf oil spill movement. Science 330(6003), 486–489 (2010)

    Article  Google Scholar 

  54. Muldoon, F.H., Kuhlmann, H.C.: Coherent particulate structures by boundary interaction of small particles in confined periodic flows. Phys. D 253, 40–65 (2013)

    Article  MathSciNet  Google Scholar 

  55. Nakayama, Y., Yamamoto, R.: Simulation method to resolve hydrodynamic interactions in colloidal dispersions. Phys. Rev. E 71, 036707 (2005)

    Article  Google Scholar 

  56. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. I. Differ. Equ. Transl. 23, 1385–1391 (1987)

    MATH  Google Scholar 

  57. Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. II. Differ. Equ. Transl. 24, 171–176 (1988)

    Google Scholar 

  58. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Peacock, T., Dabiri, J.: Introduction to focus issue: Lagrangian coherent structures. Chaos 10(1), 017501 (2010)

    Article  Google Scholar 

  60. Power, H., Febres de Power, B.: Second-kind integral equation formulation for the slow motion of a particle of arbitrary shape near a plane wall in a viscous fluid. SIAM J. Appl. Math. 53(1), 60–70 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  61. Pushkin, D.O., Melnikov, D.E., Shevtsova, V.M.: Ordering of small particles in one-dimensional coherent structures by time-periodic flows. Phys. Rev. Lett. 106, 234501 (2011)

    Article  Google Scholar 

  62. Rainer, A.: Differentiable roots, eigenvalues, and eigenvectors. Isr. J. Math. 201(1), 99–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Rasmussen, M.: Attractivity and Bifurcation for Nonautonomous Dynamical Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  64. Rasmussen, M.: Finite-time attractivity and bifurcation for nonautonomous differential equations. Differ. Equ. Dynam. Syst. 18(1), 57–78 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Romanò, F., Kuhlmann, H.C.: Interaction of a finite size particle with the moving lid of a cavity. Proc. Appl. Math. Mech. 15(1), 519–520 (2015)

    Article  Google Scholar 

  66. Romanò, F., Kuhlmann, H.C.: Smoothed-profile method for momentum and heat transfer in particulate flows. Int. J. Numer. Methods Fluids (2016). https://doi.org/10.1002/fld.4279

    Google Scholar 

  67. Rosebrock, U., Oke, P.R., Carroll, G.: An application framework for the rapid deployment of ocean models in support of emergency services: application to the MH370 search. In: Environmental Software Systems. Infrastructures, Services and Applications, pp. 235–241. Springer (2015)

  68. Rubin, J., Jones, C.K.R.T., Maxey, M.: Settling and asymptotic motion of aerosol particles in a cellular flow field. J. Nonlinear Sci. 5, 337–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  69. Rubinow, S.I., Keller, J.B.: The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11(3), 447–459 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schecter, S.: Persistent unstable equilibria and closed orbits of a singularly perturbed equation. J. Differ. Equ. 60, 131–141 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  71. Schwabe, D., Mizev, A.I., Udhayasankar, M., Tanaka, S.: Formation of dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges. Phys. Fluids 19, 072102 (2007)

    Article  MATH  Google Scholar 

  72. Scriven, L.E., Sternling, C.V.: The Marangoni effects. Nature 187, 186–188 (1960)

    Article  Google Scholar 

  73. Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D 212(3), 271–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. Shishkova, M.A.: Analysis of a system of differential equations with a small parameter at the higher derivatives. Akademiia Nauk SSSR, Doklady 209, 576–579 (1973)

    MathSciNet  MATH  Google Scholar 

  75. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  MATH  Google Scholar 

  76. Tanaka, S., Kawamura, H., Ueno, I., Schwabe, D.: Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge. Phys. Fluids 18, 067103 (2006)

    Article  Google Scholar 

  77. Vasseur, R., Cox, R.G.: The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J. Fluid Mech. 80(3), 561–591 (1977)

    Article  MATH  Google Scholar 

  78. Wechselberger, M.: A propos de canards (apropos canards). Trans. Am. Math. Soc. 364, 3289–3309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  79. Xu, B.H., Yu, A.B.: Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci. 52(16), 2785–2809 (1997)

    Article  Google Scholar 

  80. Young, J., Leeming, A.: A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129–159 (1997)

    Article  MATH  Google Scholar 

  81. Zhang, Z., Kleinstreuer, C., Kim, C.S., Cheng, Y.S.: Vaporizing microdroplet inhalation, transport, and deposition in a human upper airway model. Aerosol Sci. Technol. 38(1), 36–49 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank three referees for their reviews and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kuehn.

Additional information

CK acknowledges support via an APART fellowship of the Austrian Academy of Sciences (ÖAW) and via a Lichtenberg Professorship of the Volkswagen Foundation. Furthermore, CK would like to thank Peter Szmolyan and Daniel Karrasch for general discussions regarding non-autonomous dynamical systems, and Armin Rainer for a clarifying remark regarding differentiability of certain parameterized eigenvalues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuehn, C., Romanò, F. & Kuhlmann, H.C. Tracking particles in flows near invariant manifolds via balance functions. Nonlinear Dyn 92, 983–1000 (2018). https://doi.org/10.1007/s11071-018-4104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4104-6

Keywords

Navigation