Nonlinear Dynamics

, Volume 92, Issue 3, pp 923–933 | Cite as

Dynamics analysis of Wien-bridge hyperchaotic memristive circuit system

  • Xiaolin Ye
  • Jun Mou
  • Chunfeng Luo
  • Zhisen Wang
Original Paper


In this paper, a hyperchaotic memristive circuit based on Wien-bridge chaotic circuit was designed. The mathematical model of the new circuit is established by using the method of normalized parameter. The equilibrium point and the stability point of the system are calculated. Meanwhile, the stable interval of corresponding parameter is determined. Using the conventional dynamic analysis method, the dynamical characteristics of the system are analyzed. During the analysis, some special phenomenon such as coexisting attractor is observed. Finally, the circuit simulation of system is designed and the practical circuit is realized. The results of theoretical analysis and numerical simulation show that the Wien-bridge hyperchaotic memristive circuit has very rich and complicated dynamical characteristics. It provides a theoretical guidance and a data support for the practical application of memristive chaotic system.


Hyperchaotic memristive circuit Lyapunov exponents Coexisting attractor Circuit simulation 



This work supported by the Provincial Natural Science Foundation of Liaoning (Grant No. 20170540060).


  1. 1.
    Bao, B.C., Liu, Z., Xu, J.P.: New chaotic system and its hyperchaos generation. J. Syst. Eng. Electron. 20, 1179–1187 (2009)Google Scholar
  2. 2.
    Bao, B.C., Li, C.B., Xu, J.P., Liu, Z.: New robust chaotic system with exponential quadratic term. Chin. Phys. B 17, 4022 (2008)CrossRefGoogle Scholar
  3. 3.
    Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bao, B.C., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mou, J., Sun, K.H., Wang, H.H., Ruan, J.Y.: Characteristic analysis of fractional-order 4D hyperchaotic memristive circuit. Math. Probl. Eng. 8, 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bao, B.C., Xu, Q., Bao, H., Chen, M.: Extreme multistability in a memristive circuit. Electron. Lett. 52, 1008–1010 (2016)CrossRefGoogle Scholar
  7. 7.
    Bilotta, E.: A gallery of Chua attractors. Int. J. Bifurc. Chaos 17, 49–51 (2015)MathSciNetGoogle Scholar
  8. 8.
    Wang, G.Y., He, J.L., Yuan, F., Peng, C.J.: Dynamical behaviors of a TiO\(_2\) memristor oscillator. Chin. Phys. Lett. 30, 468–477 (2013)Google Scholar
  9. 9.
    Ventra, M.D.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2016)Google Scholar
  10. 10.
    Tour, J.M., He, T.: Electronics: the fourth element. Nature 453, 42–43 (2008)CrossRefGoogle Scholar
  11. 11.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  12. 12.
    Zeng, D., Zhang, R., Liu, Y., Zhong, S.: Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach. Appl. Math. Comput. 315, 34–46 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yu, P.: Analysis on double hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dyn. 27, 19–53 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, X., Liu, C.: A novel and effective image encryption algorithm based on chaos and DNA encoding. Multimed. Tools Appl. 76, 1–17 (2016)Google Scholar
  15. 15.
    Seth, A., Sherman, M., Eastman, P., Delp, S.: Minimal formulation of joint motion for biomechanisms. Nonlinear Dyn. 62, 291–303 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pershin, Y.V., Ventra, M.D.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  17. 17.
    Zeng, D., Zhang, R., Zhong, S., Wang, J., Shi, K.: Sampled-data synchronization control for Markovian delayed complex dynamical networks via a novel convex optimization method. Neurocomputing 266, 606–618 (2017)CrossRefGoogle Scholar
  18. 18.
    Shin, S., Kim, K., Kang, S.M.: Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10, 266–274 (2011)CrossRefGoogle Scholar
  19. 19.
    Witrisal, K.: Memristor-based stored-reference receiver-the UWB solution. Electron. Lett. 45, 713–714 (2009)CrossRefGoogle Scholar
  20. 20.
    Zhang, R., Zeng, D., Zhong, S.: Novel master–slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data control. J. Franklin Inst. 354, 4930–4954 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, R., Zeng, D., Zhong, S., Yu, Y.: Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays. Appl. Math. Comput. 310, 57–74 (2017)MathSciNetGoogle Scholar
  22. 22.
    Ju, H.P.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos Solitons Fractals 26, 959–964 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zeng, H.B., Ju, H.P., Xiao, S.P., Liu, Y.J.: Further results on sampled-data control for master-slave synchronization of chaotic Lur’e systems with time delay. Nonlinear Dyn. 82, 1343–1354 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tae, H.L., Ju, H.P.: Adaptive functional projective lag synchronization of a hyperchaotic Rössler system. Chin. Phys. Lett. 26, 090507 (2009)CrossRefGoogle Scholar
  25. 25.
    Zakhidov, A.A., Jung, B., Slinker, J.D., Abruña, H.D., Malliaras, G.G.: A light-emitting memristor. Org. Electron. 11, 150–153 (2010)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Chen, Y., Xi, H., Li, H., Dimitrov, D.: Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009)CrossRefGoogle Scholar
  27. 27.
    Torrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S.: Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011)CrossRefGoogle Scholar
  28. 28.
    Kuang, J.L., Leung, A.: Chaotic flexural oscillations of a spinning nanoresonator. Nonlinear Dyn. 51, 9–29 (2008)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sumali, H., Younis, M.I., Abdel-Rahman, E.M.: Special issue on micro- and nano-electromechanical systems. Nonlinear Dyn. 54, 1–2 (2008)CrossRefGoogle Scholar
  30. 30.
    Liu, D., Cheng, H., Zhu, X., Wang, G., Wang, N.: Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. Appl. Mater. Interfaces 5, 11258 (2013)CrossRefGoogle Scholar
  31. 31.
    Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefzbMATHGoogle Scholar
  32. 32.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  33. 33.
    Li, Z.J., Zeng, Y.C., Li, Z.B.: Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica 63, 10502–010502 (2014)Google Scholar
  34. 34.
    Bao, B.C., Liu, Z., Xu, J.P.: Dynamical analysis of memristor chaotic oscillator. Acta Physica Sinica 59, 3785–3793 (2010)Google Scholar
  35. 35.
    Bao, B.C., Hu, F.W., Liu, Z., Xu, J.P.: Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit. Chin. Phys. B 23, 303–310 (2014)Google Scholar
  36. 36.
    Vebtra, M.D., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors. Proc. IEEE Memcapacitors Meminductors 97, 1715–1716 (2009)CrossRefGoogle Scholar
  37. 37.
    Yang, X.S., Li, Q.: Chaos generator via Wien-bridge oscillator. Electron. Lett. 38, 623–625 (2002)CrossRefGoogle Scholar
  38. 38.
    Bao, B.C., Liu, Z., Xu, J.P.: Transient Chaos in smooth memristor oscillator. Chin. Phys. B 19, 158–163 (2010)Google Scholar
  39. 39.
    Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46, 237–238 (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringDalian Polytechnic UniversityDalianChina

Personalised recommendations