Nonlinear Dynamics

, Volume 92, Issue 3, pp 869–883 | Cite as

\(H_\infty \) switching synchronization for multiple time-delay chaotic systems subject to controller failure and its application to aperiodically intermittent control

  • Hong Sang
  • Hong Nie
Original Paper


This paper is concerned with the \(H_\infty \) synchronization control problem for a class of chaotic systems with multiple delays in the presence of controller temporary failure. Based on the idea of switching, the synchronization error systems with controller temporary failure are modeled as a class of switched synchronization error systems. Then, a switching condition that incorporates the controller failure time is constructed by using piecewise Lyapunov functional and average dwell-time methods, such that the switched synchronization error systems are exponentially stable and satisfy a weighted \(H_\infty \) performance level. In the meantime, a switching state feedback \(H_\infty \) controller is derived by solving a set of linear matrix inequalities. More incisively, the obtained results can also be applied to the issue of aperiodically intermittent control. Finally, three simulation examples are employed to illustrate the effectiveness and potential of the proposed method.


Chaotic systems \(H_\infty \) synchronization control Controller temporary failure Switching method Piecewise Lyapunov functional 



This work was supported by the National Natural Science Foundation of China under Grants 61673199 and 11404154 and the Education Department Science Research Foundation of Liaoning Province of China under Grant L2014151.


  1. 1.
    Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366(1), 1–101 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Karimi, H.R., Shi, P., Wang, B.: \(H_\infty \) controller design for the synchronization of a hyper-chaotic system. Theor. Appl. Genet. 101(3), 449–456 (2013)Google Scholar
  4. 4.
    Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18(1), 141–148 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cho, S.J., Jin, M., Kuc, T.Y., Lee, J.S.: Control and synchronization of chaos systems using time-delay estimation and supervising switching control. Nonlinear Dyn. 75(3), 549–560 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ghosh, D., Banerjee, S.: Exponential stability criterion for chaos synchronization in modulated time-delayed systems. Nonlinear Anal. Real World Appl. 11(5), 3704–3710 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sheng, L., Yang, H., Lou, X.: Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms. Chaos Solitons Fractals 40(2), 930–939 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Li, R.: Exponential generalized synchronization of uncertain coupled chaotic systems by adaptive control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2757–2764 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Park, J.H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J. Comput. Appl. Math. 213(1), 288–293 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, D., Zhang, R., Ma, X., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dyn. 69(1), 35–55 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Qi, D.L., Liu, M.Q., Qiu, M.K., Zhang, S.L.: Exponential \({\rm H}_{\infty }\) synchronization of general discrete-time chaotic neural networks with or without time delays. IEEE Trans. Neural Netw. 21(8), 1358–1365 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Hao, J., Zuo, Z.: A new method for exponential synchronization of chaotic delayed systems via intermittent control. Phys. Lett. A 374(19–20), 2024–2029 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zaheer, M.H., Rehan, M., Mustafa, G., Ashraf, M.: Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling. ISA Trans. 53(6), 1716–1730 (2014)CrossRefGoogle Scholar
  14. 14.
    Sun, J.: Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control. Chaos Solitons Fractals 21(1), 143–150 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Park, J.H., Ji, D.H., Won, S.C., Lee, S.: \(H_\infty \) synchronization of time-delayed chaotic systems. Appl. Math. Comput. 204(1), 170–177 (2008)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Yue, D., Han, Q.L., Lam, J.: Network-based robust \(H_\infty \) control of systems with uncertainty. Automatica 41(6), 999–1007 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jia, H., Xiang, Z., Karimi, H.R.: Robust reliable passive control of uncertain stochastic switched time-delay systems. Appl. Math. Comput. 231(1), 254–267 (2014)MathSciNetGoogle Scholar
  18. 18.
    Zhai, G.S., Lin, H.: Controller failure time analysis for symmetric \(H_\infty \) control systems. Int. J. Control 77(6), 598–605 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sun, X.M., Zhao, J., Wang, W.: State feedback control for discrete delay systems with controller failures based on average dwell-time method. IET Control Theory Appl. 2(2), 126–132 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xiang, W.M., Zhai, G.S., Briat, C.: Stability analysis for LTI control systems with controller failures and its application in failure tolerant control. IEEE Trans. Autom. Control 61(3), 811–816 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, Y., Li, C.: Complete synchronization of delayed chaotic neural networks by intermittent control with two switches in a control period. Neurocomputing 173(3), 1341–1347 (2016)CrossRefGoogle Scholar
  22. 22.
    Zheng, S.: Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling. J. Frankl. Inst. 353(6), 1460–1477 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cai, S., Liu, Z., Xu, F., Shen, J.: Periodically intermittent controlling complex dynamical networks with time-varying delays to a desired orbit. Phys. Lett. A 373(42), 3846–3854 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cai, S.M., Hao, J.J., He, Q.B., Liu, Z.R.: New results on synchronization of chaotic systems with time-varying delays via intermittent control. Nonlinear Dyn. 67(1), 393–402 (2012)CrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, X., Chen, T.: Synchronization of linearly coupled networks with delays via aperiodically intermittent pinning control. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2396–2407 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu, M., Jiang, H., Hu, C.: Finite-time synchronization of delayed dynamical networks via aperiodically intermittent control. J. Frankl. Inst. 354(13), 5374–5397 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liu, L., Chen, W.H., Lu, X.: Aperiodically intermittent \(H_\infty \) synchronization for a class of reaction-diffusion neural networks. Neurocomputing 222, 105–115 (2017)CrossRefGoogle Scholar
  28. 28.
    Park, J.H., Ji, D.H., Won, S.C., Lee, S.M.: \(H_\infty \) synchronization of time-delayed chaotic systems. Appl. Math. Comput. 204(1), 170–177 (2008)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Liu, M., Zhang, S., Fan, Z., Zheng, S., Sheng, W.: Exponential \(H_\infty \) synchronization and state estimation for chaotic systems via a unified model. IEEE Trans. Neural Netw. Learn. Syst. 24(7), 1114–1126 (2013)CrossRefGoogle Scholar
  30. 30.
    Sun, X.M., Zhao, J., Hill, D.J.: Stability and \(L_2\)-gain analysis for switched delay systems: a delay-dependent method. Automatica 42(10), 1769–1774 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sun, X.M., Liu, G.P., Wang, W., Rees, D.: \(L_2\)-gain of systems with input delay and controller failure: zero-order hold model. IEEE Trans. Control Syst. Technol. 19(3), 699–706 (2011)CrossRefGoogle Scholar
  32. 32.
    Zhai, G.S., Hu, B., Yasuda, K., Michel, A.: Disturbance attenuation properties of time-controlled switched systems. J. Frankl. Inst. 338(7), 765–779 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tian, J., Zhong, S.: Improved delay-dependent stability criterion for neural networks with time-varying delay. Appl. Math. Comput. 217(24), 10278–10288 (2001)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory, SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1994)CrossRefzbMATHGoogle Scholar
  35. 35.
    Cheng, C.K., Kuo, H.H., Hou, Y.Y., Hwang, C.C., Liao, T.L.: Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays. Physica A 387(13), 3093–3102 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ghosh, D., Chowdhury, A.R., Saha, P.: Multiple delay Rössler system-bifurcation and chaos control. Chaos Solitons Fractals 35(3), 472–485 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information and Control EngineeringLiaoning Shihua UniversityFushunChina
  2. 2.School of SciencesLiaoning Shihua UniversityFushunChina
  3. 3.College of Information Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations