Advertisement

Nonlinear Dynamics

, Volume 91, Issue 4, pp 2485–2502 | Cite as

On the vibrational analysis for the motion of a harmonically damped rigid body pendulum

Original Paper
  • 131 Downloads

Abstract

The present work outlines the investigation of a damped harmonically excited spring pendulum which moves in an elliptic path with constant angular velocity. A rigid body is attached with a damped spring and has a linear force acted along the pendulum arm. The multiple scales technique was utilized to obtain the asymptotic solutions for the governing equations of motion up to the third approximation. Some resonance cases have been classified in view of the attained modulation equations. The solvability conditions for the steady-state solutions are obtained. The time history of the attained solutions is represented graphically and compared with the numerical solutions of the governing equations of motion for suitable physical parameters of the considered dynamical model. Moreover, the resonance curves for these solutions are plotted for the same parameters.

Keywords

Harmonically excitation Resonances Perturbation methods Poincaré map 

References

  1. 1.
    Strogatz, S.H.: Nonlinear Dynamics and Choas. Westview Press, Boulder (2014)Google Scholar
  2. 2.
    Chirikov, B.V.: Resonance processes in magnetic traps. J. Nucl. Energy C Plasma Phys. 1, 253–260 (1960)CrossRefGoogle Scholar
  3. 3.
    Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, New York (1992)CrossRefMATHGoogle Scholar
  5. 5.
    Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, part I: transversally tuned absorber and negative \(G\varphi ^{n}\) feedback. Math. Comput. Appl. 11(2), 137–149 (2006)MathSciNetMATHGoogle Scholar
  6. 6.
    Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, part II: longitudinal tuned absorber and negative \(G\ddot{\varphi }\) and \(G\varphi ^{n}\) feedback. Math. Comput. Appl. 11(2), 151–162 (2006)MathSciNetMATHGoogle Scholar
  7. 7.
    Eissa, M.: Vibration reduction of a three DOF non-linear spring pendulum. Commun. Nonlinear Sci. Numer. Simul. 13, 465–488 (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Lee, W.K., Hsu, C.S.: A global analysis of an harmonically excited spring-pendulum system with internal resonance. J. Sound Vib. 171(3), 335–359 (1994)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Tongue, B.H., Gu, K.: Interpolated cell mapping of dynamical systems. J. Appl. Mech. 55, 461–466 (1987)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gilat, A.: Numerical Methods for Engineers and Scientists. Wiley, New York (2013)Google Scholar
  11. 11.
    Agrawal, A.K., Yang, J.N., Wu, J.C.: Non-linear control strategies for Duffing systems. Int. J. Non-Linear Mech. 33(5), 829–841 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Amer, T.S., Bek, M.A.: Chaotic responses of a harmonically excited spring pendulum moving in circular path. Nonlinear Anal. RWA 10(5), 3196–3202 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Belyakov, A.O.: On rotational solutions for elliptically excited pendulum. Phys. Lett. A 375, 2524–2530 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ismail, A.I.: Relative periodic motion of a rigid body pendulum on an ellipse. J. Aerosp. Eng. 22(1), 67–77 (2009)CrossRefGoogle Scholar
  15. 15.
    Nayfeh, A.H.: Perturbations Methods. Wiley, Weinheim (2004)Google Scholar
  16. 16.
    Amer, T.S.: The dynamical behavior of a rigid body relative equilibrium position. Adv. Math. Phys. (2017)  https://doi.org/10.1155/2017/8070525
  17. 17.
    Starosta, R., Kamińska, G., Awrejcewicz, J.: Asymptotic analysis of kinematically excited dynamical systems near resonances. Nonlinear Dyn. 68, 459–469 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Amer, T.S., Bek, M.A., Hamada, I.S.: On the motion of harmonically excited spring pendulum in elliptic path near resonances. Adv. Math. Phys. (2016)  https://doi.org/10.1155/2016/8734360
  19. 19.
    Starosta, R., Kamińsk, G., Awrejcewicz, J.: Parametric and external resonances in kinematically and externally excited nonlinear spring pendulum. Int. J. Bifurc. Chaos 21, 3013–3021 (2011)CrossRefMATHGoogle Scholar
  20. 20.
    Awrejcewicz, J., Starosta, R., Kamińska, G.: Asymptotic analysis and limiting phase trajectories in the dynamics of spring pendulum. In: Applied Non-Linear Dynamical Systems, vol. 93 of Springer Proceedings in Mathematics and Statistics, pp. 161–173 (2014)Google Scholar
  21. 21.
    Awrejcewicz, J., Starosta, R., Kamińska, G.: Asymptotic analysis of resonances in nonlinear vibrations of the 3-dof pendulum. Differ. Equ. Dyn. Syst. 21, 123–140 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kesimli, A., Özkaya, E., Bagdatli, S.M.: Nonlinear vibrations of spring-supported axially moving string. Nonlinear Dyn. 81, 1523–1534 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Burd, V., Matveev, V.N.: Asymptotic Methods on an Infinite Interval in Problems of Nonlinear Mechanics. Yaroslavl’:Yaroslavl’ Univ. (1985) (in Russian) Google Scholar
  24. 24.
    Neishtadt, A.I., Sheng, K.: Bifurcations of phase portraits of pendulum with vibrating suspension point. Commun. Nonlinear Sci. Numer. Simul. 47, 71–80 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chen, H., Fang, Y., Sun, N.: A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dyn. (2017).  https://doi.org/10.1007/s11071-017-3531-0 MathSciNetGoogle Scholar
  26. 26.
    Rajasekar, S., Sanjuan, M.A.: Nonlinear Resonances. Springer, Berlin (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Department of Physics and Engineering Mathematics, Faculty of EngineeringTanta UniversityTantaEgypt
  3. 3.School for Marine Science and TechnologyUniversity of MassachusettsNew BedfordUSA

Personalised recommendations