Nonlinear Dynamics

, Volume 92, Issue 1, pp 85–96 | Cite as

Generalized synchronization of fractional-order hyperchaotic systems and its DSP implementation

Original Paper

Abstract

In this paper, we investigate synchronization and its DSP implementation of fractional-order simplified Lorenz hyperchaotic systems by employing the Adomian decomposition method. The active controller and linear feedback controller are designed. Numerical simulation of the synchronized systems is carried out, and it is found that the synchronization phenomenon can be observed in both state variables and intermediate variables. Moreover, the synchronized systems are implemented in two TMS320F2-8335 DSP boards which are connected by a serial port and the output signals are exhibited by an oscilloscope. The experiment results show that the proposed implementation method works well on DSP.

Keywords

Fractional-order calculus Chaos Synchronization DSP implementation 

Notes

Acknowledgements

This work was supported by the Startup Foundation for Doctoral research (No. E07016048)

References

  1. 1.
    Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A 341, 55–61 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Jia, H.Y., Chen, Z.Q., Xue, W.: Analysis and circuit implementation for the fractional-order Lorenz system. Acta Phys. Sin. 62, 140503 (2013)Google Scholar
  3. 3.
    Guo, Y.L., Qi, G.Y.: Topological horseshoe in a fractional-order Qi four-wing chaotic system. J. Appl. Anal. Comput. 5, 168–176 (2015)MathSciNetMATHGoogle Scholar
  4. 4.
    Liu, W., Chen, K.: Chaotic behavior in a new fractional-order love triangle system with competition. J. Appl. Anal. Comput. 5, 103–113 (2015)MathSciNetMATHGoogle Scholar
  5. 5.
    Zhang, C.X., Yu, S.M.: Generation of multi-wing chaotic attractor in fractional order system. Chaos Solitons Fractals 44, 845–850 (2011)CrossRefGoogle Scholar
  6. 6.
    Xu, B.B., Chen, D.Y., Zhang, H., et al.: Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit. Nonlinear Dyn. 81, 1263–1274 (2015)CrossRefGoogle Scholar
  7. 7.
    Chen, D., Zhao, W., Sprott, J.C., et al.: Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Zhang, S., Yu, Y., Wen, G., et al.: Lag-generalized synchronization of time-delay chaotic systems with stochastic perturbation. Mod. Phys. Lett. B 30, 1550263 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 15, 3536–3546 (2013)CrossRefMATHGoogle Scholar
  10. 10.
    Chen, D.Y., Zhang, R., Sprott, J.C., et al.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Chaos 22, 1549-156 (2012)MATHGoogle Scholar
  11. 11.
    Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Phys. A 387, 57–70 (2008)CrossRefGoogle Scholar
  12. 12.
    Gammoudi, I.E., Feki, M.: Synchronization of integer order and fractional order Chua’s systems using robust observer. Commun. Nonlinear Sci. Numer. Simul. 18, 625–638 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zhang, R.X., Yang, S.P.: Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation. Chin. Phys. B 18, 3295–3303 (2009)CrossRefGoogle Scholar
  14. 14.
    Chen, D., Wu, C., Iu, H.H.C., et al.: Circuit simulation for synchronization of a fractional-order and integer-order chaotic system. Nonlinear Dyn. 73, 1671–1686 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, H., Liao, X., Luo, M.: A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 68, 137–149 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bing, L.V., Zhu, C.J.: Coupled generalized projective synchronization of the fractional-order hyperchaotic system and its application in secure communication. Nonlinear Anal. Real World Appl. 13, 1441–1450 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lin, Z., Yu, S., Lu, J., et al.: Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 25, 1203–1216 (2015)CrossRefGoogle Scholar
  18. 18.
    Charef, A., Sun, H.H., Tsao, Y.Y., et al.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37, 1465–1470 (1992)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sun, H., Abdelwahab, A., Onaral, B.: Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29, 441–444 (1984)CrossRefMATHGoogle Scholar
  20. 20.
    Penaud, S., Guittard, J., Bouysse, P.: DSP implementation of self-synchronised chaotic encoder decoder. Electron. Lett. 36, 365–366 (2000)CrossRefGoogle Scholar
  21. 21.
    Lin, J.S., Huang, C.F., Liao, T.L., et al.: Design and implementation of digital secure communication based on synchronized chaotic systems. Digit. Signal Process. 20, 229–237 (2010)CrossRefGoogle Scholar
  22. 22.
    Wang, Q.X., Yu, S.M., Guyeux, C.: Study on a new chaotic bitwise dynamical system and its FPGA implementation. Chin. Phys. B 24, 184–191 (2015)Google Scholar
  23. 23.
    Wang, H.H., Sun, K.H., He, S.B.: Characteristic analysis and DSP realization of fractional-order simplified Lorenz system based on Adomian decomposition method. Int. J. Bifurc. Chaos 25, 1550085 (2015)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    He, S.B., Sun, K.H., Wang, H.H.: Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system. Entropy 17, 8299–8311 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, H.H., Sun, K.H., He, S.B.: Dynamic analysis and implementation of a digital signal processor of a fractional-order Lorenz–Stenflo system based on the Adomian decomposition method. Phys. Scr. 90, 015206 (2015)CrossRefGoogle Scholar
  26. 26.
    Caponetto, R., Fazzino, S.: An application of Adomian decomposition for analysis of fractional-order chaotic systems. Int. J. Bifurc. Chaos 72, 301–309 (2013)MATHGoogle Scholar
  27. 27.
    Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. Mathematics 49, 277–290 (2008)Google Scholar
  28. 28.
    Donato, C., Giuseppe, G.: Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int. J. Bifurc. Chaos 18, 1845–1863 (2016)MathSciNetMATHGoogle Scholar
  29. 29.
    Sun, K.H., Liu, X., Zhu, C.X.: Dynamics of a strengthened chaotic system and its circuit implementation. Chin. J. Electron. 23, 353–356 (2014)Google Scholar
  30. 30.
    He, S.B., Sun, K.H., Wang, H.H.: Solution and dynamics analysis of a fractional-order hyperchaotic system. Math. Methods Appl. Sci. 39, 2965–2973 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHunan University of Arts and ScienceChangdeChina
  2. 2.Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Ecological Economic ZoneChangdeChina
  3. 3.School of Physics Science and TechnologyCentral South UniversityChangshaChina
  4. 4.International CollegeHunan University of Arts and ScienceChangdeChina

Personalised recommendations