Skip to main content
Log in

Generalized synchronization of fractional-order hyperchaotic systems and its DSP implementation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate synchronization and its DSP implementation of fractional-order simplified Lorenz hyperchaotic systems by employing the Adomian decomposition method. The active controller and linear feedback controller are designed. Numerical simulation of the synchronized systems is carried out, and it is found that the synchronization phenomenon can be observed in both state variables and intermediate variables. Moreover, the synchronized systems are implemented in two TMS320F2-8335 DSP boards which are connected by a serial port and the output signals are exhibited by an oscilloscope. The experiment results show that the proposed implementation method works well on DSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  2. Jia, H.Y., Chen, Z.Q., Xue, W.: Analysis and circuit implementation for the fractional-order Lorenz system. Acta Phys. Sin. 62, 140503 (2013)

    Google Scholar 

  3. Guo, Y.L., Qi, G.Y.: Topological horseshoe in a fractional-order Qi four-wing chaotic system. J. Appl. Anal. Comput. 5, 168–176 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Liu, W., Chen, K.: Chaotic behavior in a new fractional-order love triangle system with competition. J. Appl. Anal. Comput. 5, 103–113 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Zhang, C.X., Yu, S.M.: Generation of multi-wing chaotic attractor in fractional order system. Chaos Solitons Fractals 44, 845–850 (2011)

    Article  Google Scholar 

  6. Xu, B.B., Chen, D.Y., Zhang, H., et al.: Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit. Nonlinear Dyn. 81, 1263–1274 (2015)

    Article  Google Scholar 

  7. Chen, D., Zhao, W., Sprott, J.C., et al.: Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, S., Yu, Y., Wen, G., et al.: Lag-generalized synchronization of time-delay chaotic systems with stochastic perturbation. Mod. Phys. Lett. B 30, 1550263 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bhalekar, S., Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlinear Sci. Numer. Simul. 15, 3536–3546 (2013)

    Article  MATH  Google Scholar 

  10. Chen, D.Y., Zhang, R., Sprott, J.C., et al.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Chaos 22, 1549-156 (2012)

    MATH  Google Scholar 

  11. Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Phys. A 387, 57–70 (2008)

    Article  Google Scholar 

  12. Gammoudi, I.E., Feki, M.: Synchronization of integer order and fractional order Chua’s systems using robust observer. Commun. Nonlinear Sci. Numer. Simul. 18, 625–638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, R.X., Yang, S.P.: Chaos in fractional-order generalized Lorenz system and its synchronization circuit simulation. Chin. Phys. B 18, 3295–3303 (2009)

    Article  Google Scholar 

  14. Chen, D., Wu, C., Iu, H.H.C., et al.: Circuit simulation for synchronization of a fractional-order and integer-order chaotic system. Nonlinear Dyn. 73, 1671–1686 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, H., Liao, X., Luo, M.: A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 68, 137–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bing, L.V., Zhu, C.J.: Coupled generalized projective synchronization of the fractional-order hyperchaotic system and its application in secure communication. Nonlinear Anal. Real World Appl. 13, 1441–1450 (2012)

    Article  MathSciNet  Google Scholar 

  17. Lin, Z., Yu, S., Lu, J., et al.: Design and ARM-embedded implementation of a chaotic map-based real-time secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 25, 1203–1216 (2015)

    Article  Google Scholar 

  18. Charef, A., Sun, H.H., Tsao, Y.Y., et al.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37, 1465–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, H., Abdelwahab, A., Onaral, B.: Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29, 441–444 (1984)

    Article  MATH  Google Scholar 

  20. Penaud, S., Guittard, J., Bouysse, P.: DSP implementation of self-synchronised chaotic encoder decoder. Electron. Lett. 36, 365–366 (2000)

    Article  Google Scholar 

  21. Lin, J.S., Huang, C.F., Liao, T.L., et al.: Design and implementation of digital secure communication based on synchronized chaotic systems. Digit. Signal Process. 20, 229–237 (2010)

    Article  Google Scholar 

  22. Wang, Q.X., Yu, S.M., Guyeux, C.: Study on a new chaotic bitwise dynamical system and its FPGA implementation. Chin. Phys. B 24, 184–191 (2015)

    Google Scholar 

  23. Wang, H.H., Sun, K.H., He, S.B.: Characteristic analysis and DSP realization of fractional-order simplified Lorenz system based on Adomian decomposition method. Int. J. Bifurc. Chaos 25, 1550085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, S.B., Sun, K.H., Wang, H.H.: Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system. Entropy 17, 8299–8311 (2015)

    Article  Google Scholar 

  25. Wang, H.H., Sun, K.H., He, S.B.: Dynamic analysis and implementation of a digital signal processor of a fractional-order Lorenz–Stenflo system based on the Adomian decomposition method. Phys. Scr. 90, 015206 (2015)

    Article  Google Scholar 

  26. Caponetto, R., Fazzino, S.: An application of Adomian decomposition for analysis of fractional-order chaotic systems. Int. J. Bifurc. Chaos 72, 301–309 (2013)

    MATH  Google Scholar 

  27. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. Mathematics 49, 277–290 (2008)

    Google Scholar 

  28. Donato, C., Giuseppe, G.: Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int. J. Bifurc. Chaos 18, 1845–1863 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Sun, K.H., Liu, X., Zhu, C.X.: Dynamics of a strengthened chaotic system and its circuit implementation. Chin. J. Electron. 23, 353–356 (2014)

    Google Scholar 

  30. He, S.B., Sun, K.H., Wang, H.H.: Solution and dynamics analysis of a fractional-order hyperchaotic system. Math. Methods Appl. Sci. 39, 2965–2973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Startup Foundation for Doctoral research (No. E07016048)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobo He or Kehui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Sun, K., Wang, H. et al. Generalized synchronization of fractional-order hyperchaotic systems and its DSP implementation. Nonlinear Dyn 92, 85–96 (2018). https://doi.org/10.1007/s11071-017-3907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3907-1

Keywords

Navigation