Skip to main content
Log in

Families of rational solutions of the y-nonlocal Davey–Stewartson II equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The y-nonlocal Davey–Stewartson II equation is an extension of the usual DS II equation involving a partially parity-time-symmetric potential only with respect to the spatial variable y. By using the Hirota bilinear method, families of n-order rational solutions are obtained, which include lumps in the (xy)-plane and the (yt)-plane, growing-and-decaying line waves in the (xt)-plane, and hybrid solutions of interacting line rogue waves and lumps in the (xy)-plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bender, C.M., Brody, D.C., Jones, H.F.: Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction. Phys. Rev. D 70, 025001 (2004)

    Article  Google Scholar 

  3. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632 (2007)

    Article  MATH  Google Scholar 

  5. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  Google Scholar 

  6. Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  7. Regensburger, A., Bersch, C., Miri, M.A., Onischchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167 (2012)

    Article  Google Scholar 

  8. Liertzer, M., Ge, L., Cerjan, A., Stone, A.D., Tureci, H.E., Rotter, S.: Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012)

    Article  Google Scholar 

  9. Annou, K., Annou, R.: Dromion in space and laboratory dusty plasma. Phys. Plasmas 19, 043705 (2012)

    Article  Google Scholar 

  10. Alam, M.R.: Dromions of flexural-gravity waves. J. Fluid Mech. 719, 1 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Konotop, V.V., Yang, J.K., Zezyulin, D.A.: Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Article  Google Scholar 

  12. Regensburger, A., Miri, M.-A., Bersch, C., Nager, J., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Observation of defect states in PT-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013)

    Article  Google Scholar 

  13. Miri, M.-A., Regensburger, A., Peschel, U., Christodoulides, D.N.: Optical mesh lattices with PT symmetry. Phys. Rev. A 86, 023807 (2012)

    Article  Google Scholar 

  14. Liu, B., Li, L., Mihalache, D.: Vector soliton solutions in PT-symmetric coupled waveguides and their relevant properties. Rom. Rep. Phys. 67, 802 (2015)

    Google Scholar 

  15. Li, P.F., Li, B., Li, L., Mihalache, D.: Nonlinear parity-time-symmetry breaking in optical waveguides with complex Gaussian-type potentials. Rom. J. Phys. 61, 577 (2016)

    Google Scholar 

  16. He, Y.J., Zhu, X., Mihalache, D.: Dynamics of spatial solitons in parity-time-symmetric optical latties: a selection of recent theoretical results. Rom. J. Phys. 61, 595 (2016)

    Google Scholar 

  17. Mihalache, D.: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature. Rom. Rep. Phys. 69, 403 (2017)

    Google Scholar 

  18. Yang, J.K.: Partially PT symmetric optical potentials with all-real spectra and soliton families in multidimensions. Opt. Lett. 39, 1133 (2014)

    Article  Google Scholar 

  19. Kartashov, Y.V., Konotop, V.V., Torner, L.: Topological states in partially-PT-symmetric azimuthal potentials. Phys. Rev. Lett. 115, 193902 (2015)

    Article  MathSciNet  Google Scholar 

  20. Yang, J.K.: Symmetry breaking of solitons in two-dimensional complex potentials. Phys. Rev. E 91, 023201 (2015)

    Article  MathSciNet  Google Scholar 

  21. Beygi, A., Klevansky, S.P., Bender, C.M.: Coupled oscillator systems having partial PT symmetry. Phys. Rev. A 91, 062101 (2015)

    Article  Google Scholar 

  22. Huang, C., Dong, L.: Stable vortex solitons in a ring-shaped partially-PT-symmetric potential. Opt. Lett. 41, 5194 (2016)

    Article  Google Scholar 

  23. Suchkov, S.V., Sukhorukov, A.A., Huang, J.H., Dmitriev, S.V., Lee, C.H., Kivshar, Y.S.: Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10, 177 (2016)

    Article  Google Scholar 

  24. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  25. Sarma, A.K., Miri, M.A., Musslimani, Z.H.: Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. Phys. Rev. E 89, 052918 (2014)

    Article  Google Scholar 

  26. Lin, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91, 033202 (2015)

    Article  MathSciNet  Google Scholar 

  27. Xu, Z.X., Chow, K.W.: Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation. Appl. Math. Lett. 56, 72 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huang, X., Ling, L.M.: Soliton solutions for the nonlocal nonlinear Schrödinger equation. Eur. Phys. J. Plus 131, 148 (2016)

    Article  Google Scholar 

  29. Wen, X.Y., Yan, Z.Y., Yang, Y.Q.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    Article  MathSciNet  Google Scholar 

  30. Yan, Z.Y.: Nonlocal general vector nonlinear Schrödinger equations: integrability, PT symmetribility, and solutions. Appl. Math. Lett. 62, 101 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wu, Z.W., He, J.S.: New hierarchies of derivative nonlinear Schrödinger-type equation. Rom. Rep. Phys. 68, 79 (2016)

    Google Scholar 

  32. Liu, W., Qiu, D.Q., Wu, Z.W., He, J.S.: Dynamical behavior of solution in integrable nonlocal Lakshmanan–Porsezian–Daniel equation. Commun. Theor. Phys. 65, 671 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ma, L.Y., Zhu, Z.N.: Nonlocal nonlinear Schrödinger equation and its discrete version: soliton solutions and gauge equivalence. J. Math. Phys. 57, 083507 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, M., Xu, T., Meng, D.X.: Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model. J. Phys. Soc. Jpn. 85, 124001 (2016)

    Article  Google Scholar 

  35. Ma, L.Y., Shen, S.F., Zhu, Z.N.: Integrable Nonlocal Complex MKDV Equation: Soliton Solution and Gauge Equivalence. J. Math. Phys. (2017). arXiv:1612.06723

  36. Zhang, Y.S., Qiu, D.Q., Cheng, Y., He, J.S.: Rational solution of the nonlocal nonlinear Schrödinger equation and its application in optics. Rom. J. Phys. 62, 108 (2017)

    Google Scholar 

  37. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. (2016). doi:10.1111/sapm.12153. arXiv:1610.02594

  39. Davey, A., Stewartson, K.: On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A 338, 101 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ohta, Y., Yang, J.K.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A Math. Theor. 46, 105202 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  42. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)

    Article  Google Scholar 

  43. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Article  Google Scholar 

  44. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  45. Baronio, F., Wabnitz, S., Kodama, Y.: Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin. Phys. Rev. Lett. 116, 173901 (2016)

    Article  Google Scholar 

  46. Soto-Crespo, J.M., Devine, N., Akhmediev, N.: Integrable turbulence and rogue waves: breathers or solitons? Phys. Rev. Lett. 116, 103901 (2016)

    Article  Google Scholar 

  47. Xu, S.W., Porsezian, K., He, J.S., Cheng, Y.: Multi-optical rogue waves of the Maxwell–Bloch equations. Rom. Rep. Phys. 68, 316 (2016)

    Google Scholar 

  48. Chen, S., Soto-Crespo, J.M., Baronio, F., Grelu, Ph, Mihalache, D.: Rogue-wave bullets in a composite (2 + 1) D nonlinear medium. Opt. Express 24, 15251 (2016)

    Article  Google Scholar 

  49. Chen, S., Baronio, F., Soto-Crespo, J.M., Liu, Y., Grelu, Ph: Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations. Phys. Rev. E 93, 062202 (2016)

    Article  Google Scholar 

  50. Yuan, F., Rao, J., Porsezian, K., Mihalache, D., He, J.S.: Various exact rational solutions of the two-dimensional Maccari’s sysyem. Rom. J. Phys. 61, 378 (2016)

    Google Scholar 

  51. Liu, Y., Fokas, A.S., Mihalache, D., He, J.S.: Parallel line rogue waves of the third-type Davey–Stewartson equation. Rom. Rep. Phys. 68, 1425 (2016)

    Google Scholar 

  52. Chen, S., Grelu, P., Mihalache, D., Baronio, F.: Families of rational soliton solutions of the Kadomtsev–Petviashvili I equation. Rom. Rep. Phys. 68, 1407 (2016)

    Google Scholar 

  53. Zhong, W.P., Belić, M., Malomed, B.A.: Rogue waves in a two-component Manakov system with variable coefficients and an external potential. Phys. Rev. E 92, 053201 (2015)

    Article  MathSciNet  Google Scholar 

  54. Chan, H.N., Malomed, B.A., Chow, K.W., Ding, E.: Rogue waves for a system of coupled derivative nonlinear Schrödinger equations. Phys. Rev. E 93, 012217 (2016)

    Article  MathSciNet  Google Scholar 

  55. Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, Ph, Conforti, M., Wabnitz, S.: Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering. Phys. Rev. A 92, 033847 (2015)

    Article  Google Scholar 

  56. Baronio, F., Chen, S., Grelu, Ph, Wabnitz, S., Conforti, M.: Baseband modulation instability as the origin of rogue waves. Phys. Rev. A 91, 033804 (2015)

    Article  Google Scholar 

  57. Chen, S., Mihalache, D.: Vector rogue waves in the Manakov system: diversity and compossibility. J. Phys. A Math. Theor. 48, 215202 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  58. Ankiewicz, A., Akhmediev, N.: Multi-rogue waves and triangular numbers. Rom. Rep. Phys. 69, 104 (2017)

    Google Scholar 

  59. Ablowitz, M.J., Horikis, T.P.: Rogue waves in birefringent optical fibers: elliptical and isotropic fibers. J. Opt. 19, 065501 (2017)

    Article  Google Scholar 

  60. He, J.S., Xu, S.W., Porsezian, K., Dinda, P.T., Mihalache, D., Malomed, B.A., Ding, E.: Handling shocks and rogue waves in optical fibers. Rom. J. Phys. 62, 203 (2017)

    Google Scholar 

  61. Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86, 1455–1460 (2016)

    Article  MATH  Google Scholar 

  62. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  63. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80, 387–396 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  64. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)

    Article  MATH  Google Scholar 

  65. Triki, H., Leblond, H., Mihalache, D.: Soliton solutions of nonlinear diffusion–reaction-type equations with time-dependent coefficients accounting for long-range diffusion. Nonlinear Dyn. 86, 2115–2126 (2016)

    Article  MathSciNet  Google Scholar 

  66. Onorato, M., Residori, S., Bortolozzo, U., Montinad, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47 (2013)

    Article  MathSciNet  Google Scholar 

  67. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755 (2014)

    Article  Google Scholar 

  68. Onorato, M., Resitori, S., Baronio, F.: Rogue and Shock Waves in Nonlinear Dispersive Media. Lecture Notes in Physics, vol. 926. Springer, Berlin (2016)

  69. Akhmediev, N., et al.: Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)

    Article  Google Scholar 

  70. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. (doi.:10.1111/sapm.12178), also see arXiv:1704.06792

  71. Rao, J.G., Zhang, Y.S., Fokas, A.S., He, J.S.: Rogue waves of the nonlocal Davey–Stewartson I equation. ResearchGate (2017). doi:10.13140/RG.2.2.14395.41766

  72. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  73. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  74. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2180 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  75. Tajiri, M., Arai, T.: Growing-and-decaying mode solution to the Davey–Stewartson equation. Phys. Rev. E 60, 2297 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSF of China under Grant No. 11671219 and the K. C. Wong Magna Fund in Ningbo University. Yaobin Liu is supported by the Scientific Research Foundation of Graduate School of Ningbo University. We thank other members in our group at Ningbo University and Mr. Jiguang Rao at USTC (Hefei) for their many discussions and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Mihalache, D. & He, J. Families of rational solutions of the y-nonlocal Davey–Stewartson II equation. Nonlinear Dyn 90, 2445–2455 (2017). https://doi.org/10.1007/s11071-017-3812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3812-7

Keywords

Navigation