Advertisement

Nonlinear Dynamics

, Volume 92, Issue 1, pp 13–24 | Cite as

A new pinning control scheme of complex networks based on data flow

  • Xing-Yuan Wang
  • Xiao-Wei Liu
Original Paper
  • 199 Downloads

Abstract

In this paper, a new pinning control scheme called DF (data flow)-based pinning scheme is proposed. The new scheme can obtain the similar pinning efficiency with BC-based pinning scheme in real-world networks. Comparing with BC-based pinning scheme, DF-based pinning scheme has two main advantages. First, it just needs local information of network. Second, the new pinning scheme has a much lower time complexity than BC-based pinning scheme. In this paper, we have pinned two real-world networks (the US airline routing map network and the protein–protein network in yeast) to compare the new pinning scheme with degree-based, BC-based, LBC-based pinning schemes and we also pin a small-world network, a scale-free network to analyze DF-based pinning scheme in detail. Based on the Lyapunov stability theory, the validity of the scheme is proved. Finally, the numerical simulations are verified the effectiveness of the proposed method.

Keywords

Pinning scheme Complex networks Data flow Betweenness centrality Degree 

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos: 61672124, 61370145 and 61173183), the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (No: MMJJ20170203).

References

  1. 1.
    Zhang, H.G., Ma, T.D., Huang, G.B., Wang, Z.L.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 831–844 (2010)CrossRefGoogle Scholar
  2. 2.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Zhang, H.G., Wang, Z.S., Liu, D.R.: Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neural Netw. 19(5), 855–873 (2008)CrossRefGoogle Scholar
  4. 4.
    Zhang, H.G., Liu, Z., Huang, G.B., Wang, Z.S.: Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay. IEEE Trans. Neural Netw. 21(1), 91–106 (2010)CrossRefGoogle Scholar
  5. 5.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhang, H.G., Luo, Y.H., Liu, D.R.: Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans. Neural Netw. 20(9), 1490–1503 (2009)CrossRefGoogle Scholar
  7. 7.
    Feng, J.W., Yu, F.F., Zhao, Y.: Exponential synchronization of nonlinearly coupled complex networks with hybrid time-varying delays via impulsive control. Nonlinear Dyn. 85(1), 621–632 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang, H.G., Cui, L.L., Zhang, X., Luo, Y.H.: Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. IEEE Trans. Neural Netw. 22(12), 2226–2236 (2011)CrossRefGoogle Scholar
  9. 9.
    Zhang, H.G., Wei, Q.L., Luo, Y.H.: A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(4), 937–942 (2008)CrossRefGoogle Scholar
  10. 10.
    Liang, Y., Wang, X.Y.: Synchronizability on complex networks via pinning control. Pramana J. Phys. 80(4), 593–606 (2013)CrossRefGoogle Scholar
  11. 11.
    Liang, S., Wu, R., Chen, L.: Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Phys. A 444(1–2), 49–62 (2016)MathSciNetGoogle Scholar
  12. 12.
    Wang, X., She, K., Zhong, S., Cheng, J.: Synchronization of complex networks with non-delayed and delayed couplings via adaptive feedback and impulsive pinning control. Nonlinear Dyn. 86(1), 165–176 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liang, Y., Wang, X.Y., Justine, E.: Adaptive synchronization in complex networks with non-delay and variable delay coupling via pinning control. Neurocomputing 123, 292–298 (2014)CrossRefGoogle Scholar
  14. 14.
    Cheng, R., Peng, M., Zuo, J.: Pinning synchronization of discrete dynamical networks with delay coupling. Phys. A 450, 444–453 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, Y., Xiong, W.J., Lü, J.H., Ho, D.W.C.P.: Pinning scheme for complex networks based on pagerank algorithm. In: International Conference on Intelligent Computing and Integrated Systems, pp. 709–712 (2010)Google Scholar
  16. 16.
    Liu, Z.X., Chen, Z.Q., Yuan, Z.Z.: Pinning control of weighted general complex dynamical networks with time delay. Phys. A 375(1), 345–354 (2007)CrossRefGoogle Scholar
  17. 17.
    Wu, X., Liu, Y., Zhou, J.: Pinning adaptive synchronization of general time-varying delayed and multi-linked networks with variable structures. Neurocomputing 147, 492–499 (2015)CrossRefGoogle Scholar
  18. 18.
    Li, X., Wang, X.F., Chen, G.R.: Pinning a complex dynamical networks to its equilibrium. IEEE Trans. Circuits Syst. I 51(10), 2074–2087 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Xu, D., Su, Z.: Synchronization criterions and pinning control of general complex networks with time delay. Appl. Math. Comput. 215(4), 1593–1608 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Wang, X.F., Chen, G.R.: Pinning control of scale-free dynamical networks. Phys. A 310(3–4), 521–531 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhou, L.L., Wang, C.H., Zhou, L.: Cluster synchronization on multiple sub-networks of complex networks with nonidentical nodes via pinning control. Nonlinear Dyn. 83(1), 1079–1100 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ghaffari, A., Arebi, S.: Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers. Nonlinear Dyn. 83(1–2), 1003–1013 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1997)CrossRefGoogle Scholar
  24. 24.
    Hong, H., Kim, B.J., Choi, M.Y., Park, H.: Factors that predict better synchronizability on complex networks. Phys. Rev. E 69(6 Pt 2), 067105 (2004)CrossRefGoogle Scholar
  25. 25.
    Nishikawa, T., Motter, A.E., Lai, Y.C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: are small worlds easier to synchronize? Phys. Rev. Lett. 91(1), 014101 (2003)CrossRefGoogle Scholar
  26. 26.
    Jalili, M., Rad, A., Hasler, M.: Enhancing synchronizability of weighted dynamical networks using betweenness centrality. Phys. Rev. E 78(1), 016105 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rong, Z.H., Li, X., Lu, W.L.: Pinning a complex network through the betweenness centrality strategy. In: IEEE International Symposium on Circuits and Systems, pp. 1689–1692 (2009)Google Scholar
  28. 28.
    Jia, Z., Li, X.: The efficiency analysis of several categories of pinning strategies of a complex network. In: Proceedings of the 29\(^{th}\) Chinese Control Conference, Beijing, China (2010)Google Scholar
  29. 29.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2010)CrossRefzbMATHGoogle Scholar
  30. 30.
    Jia, Z., Li, X., Rong, Z.: Pinning complex dynamical networks with local betweenness centrality information. In: Proceedings of the 30th Chinese Control Conference, Yantai, China (2011)Google Scholar
  31. 31.
    Chen, T.P., Liu, X.W., Lu, W.L.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I Regul Pap. 54(6), 1317–1326 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Thadakamalla, H.P., Albert, R., Kumara, S.R.: Search in weighted complex networks. Phys. Rev. E 72(2), 066128 (2005)CrossRefGoogle Scholar
  33. 33.
    Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Guimera, R., Amaral, L.A.N.: Modeling the world-wide airport network. Phys. Condens. Matter 38(2), 381–385 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringDalian University of TechnologyDalianChina

Personalised recommendations