Nonlinear Dynamics

, Volume 92, Issue 1, pp 97–106

# Analysis of the lateral dynamics of a vehicle and driver model running straight ahead

Original Paper

## Abstract

In this paper, we show that even an extremely simple nonlinear vehicle and driver model can show complex behaviors, like multi-stability and sensible dependence on the initial condition. The mechanical model of the car has two degrees of freedom, and the related equations of motion contain the nonlinear characteristics of the tires. The driver model is described by a single (nonlinear) equation, characterized by three parameters that describe how the driver steers the vehicle. Namely such parameters are the gain (steering angle per lateral deviation from desired path), the preview distance, and the reaction time delay. Bifurcation analysis is adopted to characterize straight ahead motion at different speeds, considering separately the two cases of understeering or oversteering cars. In the first case, we show that at suitable speeds the model can have three different attracting oscillating trajectories on which the system can work and that are reached due to different disturbances. In the second case, we confirm that instability arises if the forward speed is too high. The final results of the paper, bifurcation diagrams, can be used for many considerations critical both from the theoretical and from the practical viewpoints.

## Keywords

Vehicle system dynamics Driver Multi-stability Bifurcation analysis Nonlinear systems

## References

1. 1.
Andrzejewski, R., Awrejcewicz, J.: Nonlinear Dynamics of a Wheeled Vehicle, vol. 10. Springer Science & Business Media, Berlin (2006)
2. 2.
Apel, A., Mitschke, M.: Adjusting vehicle characteristics by means of driver models. Int. J. Veh. Des. 18, 583–596 (1997)Google Scholar
3. 3.
Della Rossa, F., Mastinu, G., Piccardi, C.: Bifurcation analysis of an automobile model negotiating a curve. Veh. Syst. Dyn. 50, 1539–1562 (2012)
4. 4.
Plochl, M., Edelmann, J.: Driver models in automobile dynamics application. Veh. Syst. Dyn. 45(7–8), 699–741 (2007)
5. 5.
Della Rossa, F., Gobbi, M., Mastinu, G., Piccardi, C., Previati, G.: Bifurcation analysis of a car and driver model. Veh. Syst. Dyn. 52, 142–156 (2014)
6. 6.
7. 7.
8. 8.
Lozia, Z.: Modelling and simulation of a disturbance to the motion of a motor vehicle entering a skid pad as used for tests at driver improvement centres. In: Archiwum Motoryzacji vol. 69 PIMOT, Warsaw University of Technology (2015)Google Scholar
9. 9.
Pacejka, H.: Tire and Vehicle Dynamics, 2nd edn. Elsevier, Amsterdam (2006)Google Scholar
10. 10.
Mastinu, G., Plöchl, M.: Road and Off-Road Vehicle System Dynamics Handbook. CRC, Boca Raton (2014)Google Scholar
11. 11.
Mitschke, M., Wallentowitz, H.: Dynamik der Kraftfahrzeuge, 4th edn. Springer, Berlin (2004)
12. 12.
Gillespie T.D.: Fundamentals of vehicle dynamics. SAE International (1992)Google Scholar
13. 13.
Abe, M.: Vehicle Handling Dynamics. Elsevier, Oxford (2015)Google Scholar
14. 14.
Jazar, R.N.: Vehicle Dynamics: Theory and Application. Springer, Berlin (2008)
15. 15.
Andrzejewski, R., Awrejcewicz, J.: Nonlinear Dynamics of a Wheeled Vehicle. Springer, Berlin (2005)
16. 16.
Guiggiani, M.: The Science of Vehicle Dynamics. Springer, Berlin (2013)Google Scholar
17. 17.
Genta, G.: The Automotive Chassis. Springer, Berlin (2016)Google Scholar
18. 18.
Reimpell, J., et al.: The Automotive Chassis. Butterworth-Heineman, Oxford (2001)Google Scholar
19. 19.
Crolla, D.: Encyclopedia of Automotive Engineering. Wiley, Chichester (2015)Google Scholar
20. 20.
Dixon, J.: Tires. Suspension and Handling. Society of Automotive Engineers, Warrendale (1996)Google Scholar
21. 21.
Della Rossa, F., Sukharev, O., Mastinu, G.: Straight ahead running of a nonlinear car and driver model. In: AVEC, Munich (2016)Google Scholar
22. 22.
Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)
23. 23.
Doedel, E.J., Champneys, A.R., Fairgrieve, T., et al.: AUTO-07P: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal (2007)Google Scholar
24. 24.
Kuznetsov, YuA: Elements of Applied Bifurcation Theory. Springer, New York (2004)Google Scholar
25. 25.
Mastinu, G., Della Rossa, F., Piccardi, C.: Nonlinear dynamics of a road vehicle running into a curve. Appl. Chaos Nonlinear Dyn. Sci. Eng. 2, 125–153 (2012)
26. 26.
Pacejka, H.: Simplified analysis of steady-state turning. Veh. Syst. Dyn. 21, 269–296 (1973)Google Scholar
27. 27.
Gobbi, M., Mastinu, G., Previati, G., De Filippi, R., Lunetta, I., Moscatelli, D.: Optimal design of an electric power steering system for sport cars. In: 23rd International Symposium on Dynamics of Vehicles on Roads and Tracks, 19–23 Aug Qingdao, China (2013)Google Scholar
28. 28.
True, H.: Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way. Veh. Syst. Dyn. 51(3), 443–459 (2013)
29. 29.
Liu, Z., Payre, G., Bourassa, P.: Stability and oscillations in a time-delayed vehicle system with driver control. Nonlinear Dyn. 35, 159–173 (2004)
30. 30.
Liu, Z., Payre, G., Bourassa, P.: Nonlinear oscillations and chaotic motions in a road vehicle system with driver steering control. Nonlinear Dyn. 9, 281–304 (1996)
31. 31.
Tang, T., Li, C., Huang, H., Shang, H.: A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn. 67, 2255–2265 (2012)
32. 32.
Yi-Rong, K., Di-Hua, S., Shu-Hong, Y.: A new car-following model considering driver’s individual anticipation behavior. Nonlinear Dyn. 82, 1293–1302 (2015)
33. 33.
Wen, H., Rong, Y., Zeng, C., Qi, W.: The effect of driver’s characteristics on the stability of traffic flow under honk environment. Nonlinear Dyn. 84, 1517–1528 (2016)

## Copyright information

© Springer Science+Business Media Dordrecht 2017

## Authors and Affiliations

• Fabio Della Rossa
• 1
• Gianpiero Mastinu
• 1
1. 1.Politecnico di MilanoMilanItaly