Nonlinear Dynamics

, Volume 88, Issue 4, pp 2705–2721 | Cite as

Robust sampled-data \({\varvec{H}}_{\varvec{\infty }}\) control for offshore platforms subject to irregular wave forces and actuator saturation

  • Shipei Huang
  • Mingjie Cai
  • Zhengrong Xiang
Original Paper


This paper presents a robust sampled-data \({H_\infty }\) control scheme for vibration attenuation of offshore platforms subject to irregular wave forces and actuator saturation. When a digital computer is used to sample and quantize the measurement signal, a discrete-time control input signal will be produced. At the same time, the actuator is usually saturated due to the physical or technological constraints. In view of these, a sampled-data \({H_\infty }\) controller is designed to attenuate the wave-induced vibration of the offshore platform, thereby improving the control performance of the system. It is shown through simulation results that the proposed control scheme is effective to suppress the vibration of the offshore platform in the presence of actuator saturation.


Offshore platforms Vibration control Actuator saturation Sampled-data control \({H_\infty }\) control 



This work was supported by the National Natural Science Foundation of China under Grant No. 61273120, and the Postgraduate Innovation Project of Jiangsu Province (Grant No. KYLX-0372).


  1. 1.
    Terro, M.J., Mahmoud, M.S., Abdel-Rohman, M.: Multi-loop feedback control of offshore steel jacket platforms. Comput. Struct. 70(2), 185–202 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Zribi, M., Almutairi, N., Abdel-Rohman, M., Terro, M.: Nonlinear and robust control schemes for offshore steel jacket platforms. Nonlinear Dyn. 35(1), 61–80 (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Li, H.J., Hu, S.L.J., Jakubiak, C.: \({H_2}\) active vibration control for offshore platform subjected to wave loading. J. Sound Vib. 263(4), 709–724 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ma, H., Tang, G.Y., Zhao, Y.D.: Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces. Ocean Eng. 33(8), 1105–1117 (2006)CrossRefGoogle Scholar
  5. 5.
    Luo, M., Zhu, W.Q.: Nonlinear stochastic optimal control of offshore platforms under wave loading. J. Sound Vib. 296(4), 734–745 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ma, H., Tang, G.Y., Hu, W.: Feedforward and feedback optimal control with memory for offshore platforms under irregular wave forces. J. Sound Vib. 328(4), 369–381 (2009)CrossRefGoogle Scholar
  7. 7.
    Zhang, B.L., Han, Q.L.: Network-based modelling and active control for offshore steel jacket platform with TMD mechanisms. J. Sound Vib. 333(25), 6796–6814 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhang, X.M., Han, Q.L., Han, D.: Effects of small time-delays on dynamic output feedback control of offshore steel jacket structures. J. Sound Vib. 330(16), 3883–3900 (2011)CrossRefGoogle Scholar
  9. 9.
    Zhang, B.L., Hu, Y.H., Tang, G.Y.: Stabilization control for offshore steel jacket platforms with actuator time-delays. Nonlinear Dyn. 70(2), 1593–1603 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhang, B.L., Tang, G.Y.: Active vibration \({H_\infty }\) control of offshore steel jacket platforms using delayed feedback. J. Sound Vib. 332(22), 5662–5677 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhang, B.L., Han, Q.L., Huang, Z.W.: Pure delayed non-fragile control for offshore steel jacket platforms subject to non-linear self-excited wave force. Nonlinear Dyn. 77(3), 491–502 (2014)CrossRefMATHGoogle Scholar
  12. 12.
    Zhang, B.L., Han, Q.L., Zhang, X.M., Yu, X.: Integral sliding mode control for offshore steel jacket platforms. J. Sound Vib. 331(14), 3271–3285 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhang, B.L., Ma, L., Han, Q.L.: Sliding mode \({H_\infty }\) control for offshore steel jacket platforms subject to nonlinear self-excited wave force and external disturbance. Nonlinear Anal. Real World Appl. 14(1), 163–178 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zhang, B.L., Han, Q.L., Zhang, X.M., Yu, X.: Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Control Syst. Technol. 22(5), 1769–1783 (2014)CrossRefGoogle Scholar
  15. 15.
    Chen, T., Francis, B.: Optimal Sampled-Data Control Systems. Springer, London (1995)CrossRefMATHGoogle Scholar
  16. 16.
    Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40(8), 1441–1446 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett 57(5), 378–385 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Suh, Y.S.: Stability and stabilization of nonuniform sampling systems. Automatica 44(12), 3222–3226 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lei, J.: Optimal vibration control for uncertain nonlinear sampled-data systems with actuator and sensor delays: application to a vehicle suspension. J. Dyn. Syst. Measur. Control 135(2), 021021–021033 (2013)CrossRefGoogle Scholar
  20. 20.
    Ankireddi, S., Yang, H.T.Y.: Sampled-data \({H_2}\) optimal output feedback control for civil structures. Earthq. Eng. Struct. Dyn. 28(9), 921–940 (1999)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y.: Robust control synthesis for seat suspension systems with actuator saturation and time-varying input delay. J. Sound Vib. 329(21), 4335–4353 (2010)CrossRefGoogle Scholar
  22. 22.
    Gao, H., Sun, W., Shi, P.: Robust sampled-data \({H_\infty }\) control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 18(1), 238–245 (2010)CrossRefGoogle Scholar
  23. 23.
    Du, H., Zhang, N., Samali, B., Naghdy, F.: Robust sampled-data control of structures subject to parameter uncertainties and actuator saturation. Eng. Struct. 36, 39–48 (2012)CrossRefGoogle Scholar
  24. 24.
    Du, H., Zhang, N., Naghdy, F.: Actuator saturation control of uncertain structures with input time delay. J. Sound Vib. 330(18–19), 4399–4412 (2011)CrossRefGoogle Scholar
  25. 25.
    Ding, Y.C., Weng, F.L., Yu, Z.A.: Actuator saturation and control design for buildings structural systems with improved uncertainty description. Shock Vib. 20(2), 297–308 (2013)CrossRefGoogle Scholar
  26. 26.
    Da Silva Jr., J.M.G., Tarbouriech, S.: Anti-windup design with guaranteed regions of stability: an LMI-based approach. IEEE Trans. Automat. Control. 50(1), 106–111 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Xie, L.: Output feedback \({H_\infty }\) control of systems with parameter uncertainty. Int. J. control 63(4), 741–750 (1996)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chen, W.H., Zheng, W.X.: An improved stabilization method for sampled-data control systems with control packet loss. IEEE Trans. Automat. Control 57(9), 2378–2384 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of AutomationNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations