Advertisement

Nonlinear Dynamics

, Volume 87, Issue 4, pp 2445–2455 | Cite as

On the dual Craig–Bampton method for the forced response of structures with contact interfaces

  • Stefano Zucca
Original Paper

Abstract

Assembled structures are characterized by contact interfaces that introduce a local non-linearity and affect the dynamics of the assembly in terms of resonance frequencies and vibration levels. To assess the forced response levels of the assemblies during the design, nonlinear dynamic analyses are performed and, in order to reduce the computation time, spatial and temporal reductions of the governing equations must be used. A classical way to achieve temporal reduction is to implement the harmonic balance method to turn the time-domain differential governing equations into frequency-domain algebraic equations. Due to the local nature of contact interfaces, which usually involve a subset of degrees of freedom (dofs) of the structure, a common strategy to achieve spatial reduction is to use component mode synthesis (CMS), by retaining the contact dofs as master dofs. In this paper, a recent CMS approach, named dual Craig–Bampton method (Rixen in J Comput Appl Math, 2004. doi: 10.1016/j.cam.2003.12.014), is applied to the nonlinear forced response of structures with contact interfaces. The spectral orthogonality of the two subsets of mode shapes used as a projection basis is exploited to write a set of algebraic equations of the contact dofs in the frequency domain, with no need to compute the reduced matrices of the system. Different formulations of the governing equations are proposed for different configurations (i.e., outer contacts, inner contacts and structures with floating components), and two academic numerical test cases are used to demonstrate the method.

Keywords

Reduced-order models Nonlinear structural dynamics Forced response Localized non-linearity Contacts 

References

  1. 1.
    Rixen, D.J.: A dual Craig-Bampton method for dynamic substructuring. J. Comput. Appl. Math. (2004). doi: 10.1016/j.cam.2003.12.014 MathSciNetMATHGoogle Scholar
  2. 2.
    Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. ACTA Mech. (1997). doi: 10.1007/BF01177306 MATHGoogle Scholar
  3. 3.
    Ewins, D.J.: Control of vibration and resonance in aero engines and rotating machinery: an overview. J. Pres. Ves. Pip. Int. (2010). doi: 10.1016/j.ijpvp.2010.07.001 Google Scholar
  4. 4.
    Cardona, A., Lerusse, A., Geradin, M.: Fast Fourier nonlinear vibration analysis. Comput. Mech. 22, 128–142 (1998)CrossRefMATHGoogle Scholar
  5. 5.
    Kerschen, G., Golinval, J., Vakakis, A.F., Bergman, L.A.: The Method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41, 147–169 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Krack, M., Panning-von Scheidt, L., Wallaschek, J., Siewert, C., Hartung, A.: Reduced order modeling based on complex nonlinear modal analysis and its application to bladed disks with shroud contact. J. Eng. Gas Turbines Power. (2013). doi: 10.1115/1.4025002 Google Scholar
  7. 7.
    Segalman, D.J.: Model reduction of systems with localized nonlinearities. J. Comput. Nonlinear Dyn. (2007). doi: 10.1115/1.2727495 Google Scholar
  8. 8.
    Saito, A., Epureanu, B.I.: Bilinear modal representations for reduced-order modeling of localized piecewise-linear oscillators. J. Sound Vib. (2011). doi: 10.1016/j.jsv.2011.02.018 Google Scholar
  9. 9.
    Zucca, S., Epureanu, B.I.: Bi-linear reduced-order models of structures with friction intermittent contacts. Nonlinear Dyn. (2014). doi: 10.1007/s11071-014-1363-8 Google Scholar
  10. 10.
    Mitra, M., Zucca, S., Epureanu, B.I.: Adaptive microslip projection (AMP) for reduction of frictional and contact non-linearities in shrouded blisks. J. Comput. Nonlinear Dyn. (2016). doi: 10.1115/1.4033003 Google Scholar
  11. 11.
    Van der Valk, P.L.C.: Model reduction & interface modeling in dynamic substructuring—application to a multi-megawatt wind turbine. MsC Thesis, TU Delft, Delft (2010)Google Scholar
  12. 12.
    Bampton, M.C.C., Craig Jr., R.R.: Coupling of substructures for dynamic analyses. AIAA J. (1968). doi: 10.2514/3.4741 MATHGoogle Scholar
  13. 13.
    Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. (1975). doi: 10.2514/3.60497 MATHGoogle Scholar
  14. 14.
    Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Eng. (1991). doi: 10.1002/nme.1620320604 MATHGoogle Scholar
  15. 15.
    Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method–part I: a faster alternative to the two-level FETI method. Int. J. Numer. Meth. Eng. (2001). doi: 10.1002/nme.76 MATHGoogle Scholar
  16. 16.
    Géradin, M., Rixen, D.J.: A ‘nodeless’ dual superelement formulation for structural and multibody dynamics application to reduction of contact problems. Int. J. Numer. Meth. Eng. (2016). doi: 10.1002/nme.5136
  17. 17.
    Hagedorn, P.P., Schramm, W.W.: On the dynamics of large systems with localized nonlinearities. ASME J. Appl. Mech. (1988). doi: 10.1115/1.3173746 MATHGoogle Scholar
  18. 18.
    Chan, T.F.C., Keller, H.B.: Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue problems. SIAM J. Sci. Stat. Comput. (1982). doi: 10.1137/0903012 MathSciNetMATHGoogle Scholar
  19. 19.
    Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Method. Appl. Mech. Eng. (2015). doi: 10.1016/j.cma.2015.07.017 MathSciNetGoogle Scholar
  20. 20.
    Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56, 149–154 (1989)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Menq, C.H., Yang, B.D.: Non-linear spring resistance and friction damping of frictional constraint having two-dimensional motion. J. Sound Vib. 217, 127–143 (1998)CrossRefGoogle Scholar
  22. 22.
    Siewert, C., Siewert, C., Panning, L., Wallaschek, J., Richter, C.: Multiharmonic forced response analysis of a turbine blading coupled by nonlinear contact forces. J. Eng. Gas Turbines Power (2010). doi: 10.1115/1.4000266 Google Scholar
  23. 23.
    Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic multi-harmonic balance method and multiple solutions. J. Sound Vib. 333, 916–926 (2014)CrossRefGoogle Scholar
  24. 24.
    Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. (1965). doi: 10.2514/3.2874 Google Scholar
  25. 25.
    Nacivet, S., Pierre, C., Thouverez, F., Jezequel, L.: A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems. J. Sound Vib. 265, 201–219 (2003)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Marinescu, O., Epureanu, B.I., Banu, M.: Reduced order models of mistuned cracked bladed disks. J. Vib. Acoust. (2011). doi: 10.1115/1.4003940 Google Scholar
  27. 27.
    Cigeroglu, E., An, N., Menq, C.-H.: Forced response prediction of constrained and unconstrained structures coupled through frictional contacts. J. Eng. Gas Turbines Power (2009). doi: 10.1115/1.2940356 Google Scholar
  28. 28.
    Petrov, E.P.: A high-accuracy model reduction for analysis of nonlinear vibrations in structures with contact interfaces. J. Eng. Gas Turbines Power (2011). doi: 10.1115/1.4002810 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly

Personalised recommendations