Advertisement

Nonlinear Dynamics

, Volume 87, Issue 4, pp 2311–2324 | Cite as

Dynamic response analysis and chaos identification of 4-UPS-UPU flexible spatial parallel mechanism

  • Xiulong Chen
  • Liangkai Wu
  • Yu Deng
  • Qing Wang
Original Paper

Abstract

In order to realize the dynamic response analysis and the chaos identification of flexible spatial parallel mechanism, the nonlinear elastic dynamics model of 4-UPS-UPU flexible parallel mechanism is established under the ideal situation, and the dynamic response, phase diagrams, Poincare map and largest Lyapunov exponent of the spatial parallel mechanism are investigated. Based on the finite element method, the driving limbs of spatial parallel mechanism are divided into elements. The kinetic energy equation and potential energy equation of units are built. Then the nonlinear elastic dynamics model of 4-UPS-UPU parallel mechanism is acquired by Lagrange equation. The dynamic response of kinematic error for 4-UPS-UPU flexible parallel mechanism is analyzed. In addition, the chaos phenomenon contained in the mechanism is identified by phase diagrams, Poincare map and largest Lyapunov exponent, respectively. Subsequently, the relationship between the basic parameters of parallel mechanism and largest Lyapunov exponent is discussed. The results indicate that there exists chaotic phenomena in the 4-UPS-UPU flexible parallel mechanism, and the basic parameters, including the material of driving limbs, diameter of driving limbs, mass of moving platform and the distribution radius of hinges of moving platform all have great effect on chaotic motion of 4-UPS-UPU flexible parallel mechanism. The researches can provide important theoretical for the further nonlinear dynamics behaviors research and optimal design of 4-UPS-UPU flexible spatial parallel mechanism.

Keywords

Spatial parallel mechanism Elastodynamics Dynamic response Chaos identification 

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 51005138), the Shandong Young Scientists Award Fund (Grant No. BS2012ZZ008), Taishan Scholarship Project of Shandong Province (No. tshw20130956).

References

  1. 1.
    Yu, Y.Q., Du, Z.C., Yang, J.X., et al.: An experimental study on the dynamics of a 3-RRR flexible parallel robot. IEEE Trans. Robot. 27(5), 992–997 (2011)CrossRefGoogle Scholar
  2. 2.
    Zhang, M.H., Zhuo, B.H.: Simulink realization for dynamic simulation of diamond parallel mechanism. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 29(1), 90–94 (2010)Google Scholar
  3. 3.
    Zhang, Q., Mills, J.K., Cleghorn, W.L., et al.: Dynamic model and input shaping control of a flexible link parallel manipulator considering the exact boundary conditions. Robotica 33(06), 1201–1230 (2015)CrossRefGoogle Scholar
  4. 4.
    Renson, L., Noël, J.P., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn. 79(2), 1293–1309 (2015)CrossRefGoogle Scholar
  5. 5.
    De Paula, A.S., Savi, M.A.: Comparative analysis of chaos control methods: a mechanical system case study. Int. J. Non-Linear Mech. 46(8), 1076–1089 (2011)CrossRefGoogle Scholar
  6. 6.
    Vaidyanathan, S., Volos, C.K., Pham, V.T.: Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J. Eng. Sci. Technol. Rev. 8(2), 232–244 (2015)Google Scholar
  7. 7.
    Erbts, P., Hartmann, S., Düster, A.: A partitioned solution approach for electro-thermo-mechanical problems. Arch. Appl. Mech. 85(8), 1075–1101 (2015)CrossRefMATHGoogle Scholar
  8. 8.
    Qi, G., Chen, G.: A spherical chaotic system. Nonlinear Dyn. 81(3), 1381–1392 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jordehi, A.R.: Seeker optimisation (human group optimisation) algorithm with chaos. J. Exp. Theor. Artif. Intell. 27(6), 753–762 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhang, J., Chu, Y., Li, X., et al.: Using proportional and different controller to control chaos in non-autonomous mechanical system. Int. J. Model. Identif. Control 8(1), 4–9 (2009)CrossRefGoogle Scholar
  11. 11.
    Wu, J., Chen, X., Wang, L., et al.: Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor. Nonlinear Dyn. 78(1), 241–250 (2014)CrossRefGoogle Scholar
  12. 12.
    Wang, H., Sang, L., Hu, X., et al.: Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism. Chin. J. Mech. Eng. 26(5), 881–891 (2013)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Li, Y., Zhang, Y., et al.: Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dyn. 76(3), 1737–1751 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Khosravi, M.A., Taghirad, H.D.: Dynamic modeling and control of parallel robots with elastic cables: singular perturbation approach. IEEE Trans. Robot. 30(3), 694–704 (2014)CrossRefGoogle Scholar
  15. 15.
    Wu, J., Chen, X., Wang, L.: Design and dynamics of a novel solar tracker with parallel mechanism. IEEE/ASME Trans. Mechatron. 21(1), 88–97 (2016)Google Scholar
  16. 16.
    Du, J., Bao, H., Cui, C., et al.: Dynamic analysis of cable-driven parallel manipulators with time-varying cable lengths. Finite Elem. Anal. Des. 48(1), 1392–1399 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, B., Li, Y., Ge, W. et al.: Dynamics analysis of a novel over-constrained three-DOF parallel manipulator. IEEE Int. Conf. Mechatron. Autom. (2014). doi: 10.1109/ICMA.2014.6885804
  18. 18.
    Yang, C., Han, J., Zheng, S., et al.: Dynamic modeling and computational efficiency analysis for a spatial 6-DOF parallel motion system. Nonlinear Dyn. 67(2), 1007–1022 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wu, J., Wang, L., Guan, L.: A study on the effect of structure parameters on the dynamic characteristics of a PRRRP parallel manipulator. Nonlinear Dyn. 74(1–2), 227–235 (2013)CrossRefGoogle Scholar
  20. 20.
    Sharifnia, M., Akbarzadeh, A.: Dynamics and vibration of a 3-PSP parallel robot with flexible moving platform. J. Vib. Control 22(4), 1095–1116 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gang, F., Hong-ni, G., Yan-bin, L., Lin, Z.: Effect of crack on vibration characteristics of a spiral bevel gear transmission system. J. Vib. Shock 33(19), 129–133 (2014)Google Scholar
  22. 22.
    Jianwei, L.U., Jue, G.U., Qidong, W.: Influence analysis of movement pair clearance on nolinear dynamic behacior of vehicle shimmy system. Chin. J. Mech. Eng. 44(8), 169–173 (2008)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y., Gao, F., Dong, X., et al.: Elastodynamic characteristics comparison of the 8-PSS redundant parallel manipulator and its non-redundant counterpart–the 6-PSS parallel manipulator. Mech. Mach. Theory 45(2), 291–303 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Pomares, J., Perea, I., Torres, F.: Dynamic visual servoing with chaos control for redundant robots. IEEE/ASME Trans. Mechatron. 19(2), 423–431 (2014)CrossRefGoogle Scholar
  25. 25.
    Zhang, J.-F., XU, L.-J.: Nonlinear elastodynamics model of adjustable mechanisms. J. Sichuan Univ. Eng. Sci. Ed. 37(4), 129–133 (2005)Google Scholar
  26. 26.
    Liang, L., Song, H., Guo, Q.: Research on rigid-elastic coupling dynamics using Lagrange equation. J. Harbin Eng. Univ. 36(4), 456–460 (2015)MathSciNetGoogle Scholar
  27. 27.
    Chen, X., Li, Y., Deng, Y., et al.: Kinetoelastodynamics modeling and analysis of spatial parallel mechanism. Shock Vib. 2015, 1–10 (2015). doi: 10.1155/2015/938314
  28. 28.
    Dan, W., Rui, F.: Design and nonlinear analysis of a 6-DOF compliant parallel manipulator with spatial beam flexure hinges. Precis. Eng. 45, 365–373 (2016)Google Scholar
  29. 29.
    Jiang, Y., Zhu, H., Li, Z., et al.: The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration. Nonlinear Dyn. 84(1), 203–222 (2016)CrossRefGoogle Scholar
  30. 30.
    Xiang-ling, W., Cong-qing, W.: Adaptive attitude coordination control of formation flying satellite. J. Astronaut. 30(4), 1531–1536 (2009)Google Scholar
  31. 31.
    Hai-nan, Z., Shu-qian, C., Yong-lei, S.: Vibration localization of a mistuned bladed disk system with friction and gap. J. Vib. Shock 35(2), 82–90 (2016)Google Scholar
  32. 32.
    Cao, J., Zhou, S., Inman, D.J., et al.: Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80(4), 1705–1719 (2015)CrossRefGoogle Scholar
  33. 33.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 65(1), 117–134 (1993)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Xia, C., Song, P., Shi, T., et al.: Chaotic dynamics characteristic analysis for matrix converter. IEEE Trans. Ind. Electron. 60(1), 78–87 (2013)CrossRefGoogle Scholar
  35. 35.
    Si-hua, H., Shao-qing, Y., Ai-guo, S., et al.: Detection of ship targets on the sea surface based onLyapunov exponents of image block. Acta Physica Sinica 58(2), 794–801 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of Mechanical and Electronic EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Institute of Nano EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations