Skip to main content
Log in

Dark spatiotemporal optical solitary waves in self-defocusing nonlinear media

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dark three-dimensional spatiotemporal solitons or the “dark light bullets” in the self-defocusing nonlinear media with equal diffraction and dispersion lengths are demonstrated analytically. Our results show that the main characteristic of the dark light bullets can be described by the cylindrical Korteweg–de Vries (CKdV) equation. The dark wave packets are composed of the single-layer and multilayer toroidal rings. For the multilayer rings, there exist small inner rings enclosed in a large ring-shaped toroidal structure, when one chooses different orders of the soliton solutions of the CKdV equation. The radius of dark ring solitons increases with the propagation distance. Present results provide a feasible method for controlling the fundamental structure of these beams in the self-defocusing nonlinear media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, New York (2003)

    Google Scholar 

  2. Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  3. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  4. Zhong, W.P., Belic, M., Huang, T.: Two-dimensional accessible solitons in PT-symmetric potentials. Nonlinear Dyn. 70, 2027–2034 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y.X., Xu, F.Q., Jiang, B.Y.: Spatiotemporal soliton structures in (3+1)-dimensional PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 82, 2051–2057 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, C.Q., Wang, Y.Y.: Spatiotemporal localizations in (3+1)-dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453–2459 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)

    Google Scholar 

  8. Taylor, J.R.: Optical Solitons: Theory and Experiment. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  9. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  10. Fischer, R., Neshev, D.N., Krolikowski, W., Kivshar, Y.S., Iturbe, C.D., Chavez, C.S., Meneghetti, M.R., Caetano, D.P., Hickman, J.M.: Oblique interaction of spatial dark-soliton stripes in nonlocal media. Opt. Lett. 31, 3010–3012 (2006)

    Article  Google Scholar 

  11. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  Google Scholar 

  12. Zhong, W.P., Xie, R.H., Belic, M., Petrovic, N., Chen, G.: Exact spatial soliton solutions of the 2D generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. A 78, 023821 (2008)

    Article  Google Scholar 

  13. Kivshar, Y.S., Davies, B.L.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  14. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005)

    Article  Google Scholar 

  15. Mihalache, D.: Localized optical structures: an overview of recent theoretical and experimental developments. Proc. Rom. Acad. A 16, 62–69 (2015)

    MathSciNet  Google Scholar 

  16. He, Y., Zhu, X., Mihalache, D.: Dynamics of spatial solitons in parity-time-symmetric optical lattices: a selection of recent theoretical results. Rom. J. Phys. 61, 595–613 (2016)

    Google Scholar 

  17. Malomed, B., Torner, L., Wise, F., Mihalache, D.: On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B: At. Mol. Opt. Phys. 49, 170502 (2016)

    Article  Google Scholar 

  18. Yang, Z.P., Zhong, W.P., Mihalache, D.: Classification of families of exact localized solutions of potential-free Schrodinger equation in spherical coordinates. Rom. J. Phys. 61, 814–826 (2016)

    Google Scholar 

  19. Chen, S., Soto-Crespo, J.M., Baronio, F., Grelu, P., Mihalache, D.: Rogue-wave bullets in a composite (2+1)D nonlinear medium. Opt. Express 24, 15251–15260 (2016)

    Article  Google Scholar 

  20. Silberberg, Y.: Collapse of optical pulses. Opt. Lett. 15, 1282–1284 (1990)

    Article  Google Scholar 

  21. Zhong, W.P., Belic, M., Assanto, G., Malomed, B.A., Huang, T.: Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient. Phys. Rev. A 84, 043801 (2011)

    Article  Google Scholar 

  22. Zhong, W.P., Belic, M., Assanto, G., Huang, T.: Three-dimensional spatiotemporal vector solitary waves. J. Phys. B: At. Mol. Opt. Phys. 44, 095403 (2011)

    Article  Google Scholar 

  23. Huang, G., Makarov, V.A., Velarde, M.G.: Two-dimensional solitons in Bose–Einstein condensates with a disk-shaped trap. Phys. Rev. A 67, 023604 (2003)

    Article  Google Scholar 

  24. Johnson, R.S.: Water waves and Korteweg-de Vries equations. J. Fluid Mech. 97, 701–709 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic, Boston (1997)

    MATH  Google Scholar 

  26. Dai, C.Q., Wang, Y.: Infinite generation of soliton-like solutions for complex nonlinear evolution differential equations via the NLSE-based constructive method. Appl. Math. Comp. 236, 606 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 84, 1157 (2016)

    Article  MATH  Google Scholar 

  28. Hietarinta, J.: Hirota’s bilinear method and soliton solutions. Physics AUC, vol. 15 (part I) 31-37 (2005)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 61275001) and by the Natural Science Foundation of Guangdong Province, China (No. 2014A030313799). Work at the Texas A&M University at Qatar was supported by the NPRP 6-021-1-005 project with the Qatar National Research Fund (a member of Qatar Foundation). MRB also acknowledges support from the Al Sraiya Holding Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ping Zhong.

Appendix

Appendix

In this Appendix, we show how to obtain multiple soliton solutions of the KdV Eq. (7), represented in the Hirota’s bilinear form. The details can be find in any good introductory account of the Hirota bilinear method, such as  [28]. To this end, we make use of the following logarithmic transformation: \(w\left( {\zeta , T} \right) \,{=}\,-2\frac{\partial ^{2}\ln f\left( {\zeta ,T} \right) }{\partial T^{2}}\). Substituting it into Eq. (7), we obtain a bilinear form of the KdV equation for f, as:

(9)

As usual, the Hirota bilinear operator is defined as

$$\begin{aligned}&D_\zeta ^m D_T^n \left( {f\cdot g} \right) =\left( {\partial _\zeta -\partial _{{\zeta }'} } \right) ^{m}\left( {\partial _T -\partial _{{T}^{\prime }} } \right) ^{n}\nonumber \\&\quad \times f\left( {\zeta ,T} \right) \left. {g\left( {{\zeta }^{\prime },{T}^{\prime }} \right) } \right| _{\zeta ={\zeta }^{\prime },T={T}^{\prime }}. \end{aligned}$$
(10)

Special solutions for f can be obtained by expanding it perturbatively as \(f\,{=}\,1+\lambda f_1 +\lambda ^{2}f_2 +\lambda ^{3}f_3+\cdots \), where \(\lambda \) is supposed to be small. Plugging this ansatz into Eq. (9) and collecting terms pertaining to the same powers of \(\lambda \), we obtain a system of linear partial differential equations. From the expansion terms \(f_{1,} f_{2,} f_{3,{\ldots }}\) one forms the Nth-order solitary wave solutions of Eq. (7).

1.1 One-soliton solution

It is easily checked that if \(f_1 \,{=}\,\hbox {e}^{\Omega _1 }\) with \(\Omega _1\,{=}\,k_1 T-k_1^3 \zeta +\theta _{10} \), then \(f_{2} \,{=}\,f_3 \,{=}\,\cdots \,{=}\,0\). Letting \(\lambda \,{=}\,1\), we obtain the one-soliton solution of Eq. (7),

$$\begin{aligned} w_1 \left( {\zeta ,T} \right)= & {} -\frac{2k_1^2\text{ e }^{k_1 T-k_1^3 \zeta +\theta _{10} }}{\left( {1+\text{ e }^{k_1 T-k_1^3 \zeta +\theta _{10} }} \right) ^{2}}\nonumber \\= & {} -\frac{k_1^2 }{2}\hbox {sech}^{{2}}\left[ {\frac{k_1 T-k_1^3 \zeta +\theta _{10} }{2}} \right] , \end{aligned}$$
(11)

where \(k_1 \) and \(\theta _{10} \) are the KdV soliton amplitude and the initial phase shift, respectively.

1.2 Two-soliton solution

Equation (9) is a linear equation, for which the superposition principle holds, so we may add a number of exponential terms to \(f_2 \); let us suppose that \(f_1 \,{=}\,\text{ e }^{\Omega _1 }+\text{ e }^{\Omega _2 }, f_2 \,{=}\,\hbox {e}^{\Omega _1 +\Omega _2 +\Lambda _{{12}} }\), where \(\Omega _j \,{=}\,k_j T-k_j^3 \zeta +\theta _{j0}\ (j=1,2)\) and \(\text{ e }^{\Lambda _{12} }=\left( {\frac{k_1 -k_2 }{k_1 +k_2 }} \right) ^{2}\). Thus, letting \(\lambda \,{=}\,1\), we obtain the two-soliton solution of Eq. (7),

$$\begin{aligned} w_{2} \left( {\zeta ,T} \right) =-2\frac{\partial ^{2}}{\partial T^{2}}\ln \left( \hbox {1}+\text{ e }^{\Omega _1 }+\text{ e }^{\Omega _2 }+\text{ e }^{\Omega _1 +\Omega _2 +\Lambda _{{12}} } \right) .\nonumber \\ \end{aligned}$$
(12)

1.3 Three-soliton solution

When \(j\,{=}\,3\), the calculation of this case is a tedious but straightforward algebraic exercise. For \(f_j\ (j\,{=}\,1,2,3)\), we choose: \(f_1 \,{=}\,\text{ e }^{\Omega _1 }+\text{ e }^{\Omega _2 }+\text{ e }^{\Omega _3 },f_2 \,{=}\,\text{ e }^{\Omega _1 +\Omega _2 +\Lambda _{{12}} }+\text{ e }^{\Omega _1 +\Omega _3 +\Lambda _{{13}} }+\text{ e }^{\Omega _2 +\Omega _3 +\Lambda _{{23}} }, f_3 \,{=}\,\text{ e }^{\Omega _1 +\Omega _2 +\Omega _3 +\Lambda _{{12}} +\Lambda _{{13}} +\Lambda _{{23}} }\), where \(\Omega _j \,{=}\,k_j T-k_j^3 \zeta +\theta _{j0} \), in which each term describes a one-soliton. A long calculation then leads to the similar expression of the three-soliton solution of Eq. (7):

$$\begin{aligned}&w_{3} \left( {\zeta ,T} \right) =-2\frac{\partial ^{2}}{\partial T^{2}}\ln \left( \hbox {1}+\text{ e }^{\Omega _1 }\right. \nonumber \\&\quad \left. +\,\text{ e }^{\Omega _2 }+\text{ e }^{\Omega _3 }+\text{ e }^{\Omega _1 +\Omega _2 +\Lambda _{{12}} }+\text{ e }^{\Omega _1 +\Omega _3 +\Lambda _{{13}} }\right. \nonumber \\&\quad \left. +\,\text{ e }^{\Omega _2 +\Omega _3 +\Lambda _{{23}} }+\text{ e }^{\Omega _1 +\Omega _2 +\Omega _3 +\Lambda _{{12}} +\Lambda _{{13}} +\Lambda _{{23}} } \right) , \end{aligned}$$
(13)

with \(\text{ e }^{\Lambda _{jl} }=\left( {\frac{k_j -k_l }{k_j +k_l }} \right) ^{2}\), where \(j<l\), \(j,l=1,2,3\).

1.4 The Nth-soliton solution

More generally, one can write the Nth-order solitary wave solution of Eq. (7) in the form:

$$\begin{aligned}&w_N \left( {\zeta ,T} \right) \nonumber \\&\quad =-2\frac{\partial ^{2}}{\partial T^{2}}\ln \left[ \sum _{\mu =0,1} \exp \left( \sum _{j=0}^N \mu _j \left( {k_j T{-}k_j^3 \zeta {+}\theta _{j0} } \right) \right. \right. \nonumber \\&\quad \left. \left. \quad +\,\sum _{1\le j<l}^N {\mu _j \mu _l \Lambda _{jl} } \right) \right] , \end{aligned}$$
(14)

where \(\exp \Lambda _{ij} \,{=}\,\frac{\left( {k_i -k_j } \right) ^{2}}{\left( {k_i +k_j } \right) ^{2}}\). The sum \(\sum _{\mu =0,1} \) involves all possible combinations of \(\mu _1 \,{=}\,0,1\); \(\mu _2 \,{=}\,0,1\)...; \(\mu _N \,{=}\,0,1\). It indicates that there are \(\hbox {2}^{N}\) terms. When all \(\mu _j \) are zero, the corresponding term is 1, while when \(\mu _{1} \,{=}\,\hbox {0}\) and other \(\mu _j \,{=}\,\hbox {1}\), the corresponding term is \(\exp \left( {\sum \nolimits _{j=2}^N {\left( {k_j T-k_j^3 \zeta +\theta _{j0} } \right) +\sum \nolimits _{2\le j<l}^N {\Lambda _{jl} } } } \right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, WP., Belić, M.R. & Zhang, Y. Dark spatiotemporal optical solitary waves in self-defocusing nonlinear media. Nonlinear Dyn 87, 2171–2177 (2017). https://doi.org/10.1007/s11071-016-3180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3180-8

Keywords

Navigation