Skip to main content
Log in

Hybrid active and passive control of a very large floating beam structure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a novel hybrid active and passive control method for very large floating structure (VLFS) to reduce the hydroelastic response, such that the resulting controlled VLFS can enhance its serviceability on the whole area. The floating beam structure is described as a distributed parameter system with partial differential equation (PDE). According to Lyapunov stability principle, a hybrid active and passive controller is designed to suppress the vibration of VLFS for the improvement in serviceability. In the active control design, two boundary controllers are developed to act on the upstream and downstream ends of VLFS, respectively. In passive control design, passive control components with high elastic rigidities are used to absorb the dynamic energy of VLFS from waves. Numerical simulations with comparison to the existing active control method are used to verify the effectiveness of the proposed control method. The parametric studies are given to examine the effects of various parameters to the vibration response of VLFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He, W., Sun, C., Ge, S.S.: Top tension control of a flexible marine riser by using integral-barrier lyapunov function. IEEE/ASME Trans. Mechatron. 20(2), 497–505 (2015)

    Article  Google Scholar 

  2. Kara, F.: Time domain prediction of hydroelasticity of floating bodies. Appl. Ocean Res. 51, 1–13 (2015)

    Article  Google Scholar 

  3. Wang, C.M., Watanabe, E., Utsunomiya, T.: Very Large Float. Struct. Taylor & Francis, Abingdon (2008)

    Google Scholar 

  4. Wang, C.M., Tay, Z.Y., Takagi, K., Utsunomiya, T.: Literature review of methods for mitigating hydroelastic response of VLFS under wave action. Appl. Mech. Rev. 63, 1–18 (2010)

    Google Scholar 

  5. Watanabe, E., Utsunomiya, T., Wang, C.M.: Hydroelastic analysis of pontoon-type VLFS: a literature survey. Eng. Struct. 26, 245–256 (2004)

    Article  Google Scholar 

  6. Khabakhpasheva, T.I., Korobkin, A.A.: Hydroelastic behaviour of compound floating plate in waves. J. Eng. Math. 44, 21–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xia, D.W., Kim, J.W., Ertekin, R.C.: On the hydroelastic behavior of two dimensional articulated plates. Mar. Struct. 13(4–5), 261–278 (2000)

    Article  Google Scholar 

  8. Syed, S.A., Mani, J.S.: Performance of rigidly interconnected multiple floating pontoons. J. Naval Archit. Mar. Eng. 1(1), 3–17 (2004)

    Google Scholar 

  9. Yu, L., Li, R., Shu, Z.: A numerical and experimental study on dynamic response of MOB connectors. In: Proceedings of the 14th International Offshore and Polar Engineering Conference. Toulon, France, pp. 636–643 (2004)

  10. Karmakar, D., Bhattacharjee, J., Sahoo, T.: Wave interaction with multiple articulated floating elastic plates. J. Fluids Struct. 25(6), 1065–1078 (2009)

    Article  Google Scholar 

  11. Fu, S.X., Moan, T., Chen, X.J., Cui, W.C.: Hydroelastic analysis of flexible floating interconnected structures. Ocean Eng. 34(11–12), 1516–1531 (2007)

    Article  Google Scholar 

  12. Kim, B. W., Kyoung, J. H., Hong, S. Y., Cho, S. K.: Investigation of the effect of stiffness distribution and structure shape on hydroelastic response of very large floating structures. In: Proceedings of 15th International Offshore and Polar Engineering Conference. Seoul, South Korea, pp. 229-238 (2005)

  13. Riyansyah, M., Wang, C.M., Choo, Y.S.: Connection design for two floating beam system for minimum hydroelastic response. Mar. Struct. 23(1), 67–87 (2010)

    Article  Google Scholar 

  14. Gao, R.P., Wang, C.M., Koh, C.G.: Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells. Eng. Struct. 52, 372–383 (2013)

    Article  Google Scholar 

  15. Yang, J.S., Gao, R.P.: Active control of a very large floating beam structure. J. Vib. Acoust. 138(2), 021010–021010-7 (2016)

    Article  MathSciNet  Google Scholar 

  16. He, W., He, X., Ge, S.S.: Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Trans. Mechatron. 21(1), 254–265 (2016)

    Google Scholar 

  17. He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Ind. Electron. 62(8), 5023–5030 (2015)

    Article  Google Scholar 

  18. He, W., Zhang, S., Ge, S.S.: Robust adaptive control of a thruster assisted position mooring system. Automatica 50(7), 1843–1851 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, W., Zhang, S., Ge, S.S.: Boundary output-feedback stabilization of a timoshenko beam using disturbance observer. IEEE Trans. Ind. Electron. 60(11), 5186–5194 (2013)

    Article  Google Scholar 

  20. Pu, Z., Yuan, R., Yi, J., Tan, X.: A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Trans. Ind. Electron. 62(9), 5858–5869 (2015)

    Article  Google Scholar 

  21. Shang, Y.F., Xu, G.Q.: Stabilization of an Euler–Bernoulli beam with input delay in the boundary control. Syst. Control Lett. 61(11), 1069–1078 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, B.Z., Yang, K.Y.: Dynamic stabilization of an Euler–Bernoulli beam equation with time delay in boundary observation. Automatica 45(6), 1468–1475 (2009)

  23. Zhang, S., He, W., Nie, S., Liu, C.: Boundary control for flexible mechanical systems with input dead-zone. Nonlinear Dyn. 82, 1763–1774 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by research project Grant (R-SMI-2013-MA-11) funded by the Singapore Maritime Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Sheng Yang.

Appendices

Appendix 1

The kinetic energy \(E_\mathrm{k}\) in the VLFS system can be described as

$$\begin{aligned} E_\mathrm{k} (t)=\frac{1}{2}\int _0^L {\rho \left( {\frac{\partial w(x,t)}{\partial t}} \right) ^{2}\hbox {d}x} \end{aligned}$$
(8)

where x and t represent the independent spatial and temporal variables, respectively. w(xt) and \(\dot{w}(x,t)\) are the position and velocity on the position x of VLFS system at the time t.

The bending and tension potential energy \(E_\mathrm{p} \) in the VLFS system can be

$$\begin{aligned} E_\mathrm{p} (t)= & {} \frac{1}{2}\int _0^L {EI\left( x \right) \left( {\frac{\partial ^{2}w(x,t)}{\partial x^{2}}} \right) ^{2}\hbox {d}x}\nonumber \\&+\frac{1}{2}T\int _0^L {\left( {\frac{\partial w(x,t)}{\partial x}} \right) ^{2}\hbox {d}x} \end{aligned}$$
(9)

where EI and T are the bending rigidity and tension of the VLFS system, respectively.

The virtual work done by ocean wave uncertainties on the VLFS is given by

$$\begin{aligned} \delta W_f =\int _0^L {f(x,t)} \delta w(x,t) \mathrm {dx} \end{aligned}$$
(10)

where f(xt) is the distributed load on the VLFS due to the hydrodynamic effects of the ocean waves.

The virtual work done by damping on the VLFS system is described by

$$\begin{aligned} \delta W_{d}= & {} -\int _0^L {c_\mathrm{d} \frac{\partial w(x,t)}{\partial t}} \delta w(x,t)\mathrm{dx} \nonumber \\&-\,c_\mathrm{d} \frac{\partial w(L,t)}{\partial t}\delta w(L,t)\nonumber \\&-\,c_\mathrm{d} \frac{\partial w(0,t)}{\partial t}\delta w(0,t) \end{aligned}$$
(11)

where \(c_\mathrm{d} \) is the damping coefficient of the VLFS system.

The virtual work done by spring on the VLFS system is described by

$$\begin{aligned} \delta W_r= & {} -\int _0^L {k_\mathrm{c} w(x,t)} \delta w(x,t)\mathrm{dx} \nonumber \\&-\,k_\mathrm{c} w(L,t)\delta w(L,t)-k_\mathrm{c} w(0,t)\delta w(0,t) \end{aligned}$$
(12)

where \(k_\mathrm{c} \) is the spring constant of the hydrostatic restoring force.

The virtual work done by the boundary control is written as

$$\begin{aligned} \delta W_m =u(L,t)\delta w(L,t)+v(0,t)\delta w(0,t) \end{aligned}$$
(13)

where u(Lt) is the control input at the position L of VLFS and v(0, t) is the control input at the position 0 of VLFS.

Thus, we have the total virtual work done on the VLFS as

$$\begin{aligned} \delta W=\delta W_f +\delta W_m +\delta W_d +\delta W_r \end{aligned}$$
(14)

Hamilton’s principle which is utilized to derive the governing equations of VLFS system is represented by

$$\begin{aligned} \int _{t_1 }^{t_2 } {\delta \left[ {E_\mathrm{k} (t)-E_\mathrm{p} (t)+W(t)} \right] \hbox {d}t} =0 \end{aligned}$$
(15)

where \(t_1 \) and \(t_2 \) are two time instants with \(t_1<t<t_2 \) and \(\delta \) denotes the variational operator.

Then, we can obtain the governing equations of the system (1) with boundary conditions (1)–(3).

Appendix 2

Consider the system (1) and introduce the following appropriate integral Lyapunov functional candidates:

$$\begin{aligned} V(t)=V_1 (t)+V_2 (t)+V_3 (t) \end{aligned}$$
(16)

where

$$\begin{aligned} V_1 (t)= & {} \frac{\beta \rho }{2}\int _0^L {w_t^2 (x,t)} \hbox {d}x \nonumber \\&+\,\frac{\beta }{2}\int _0^L {EI(x)w_{xx}^2 (x,t)} \hbox {d}x \nonumber \\&+\,\frac{\beta T}{2}\int _0^L {w_x^2 (x,t)} \hbox {d}x \nonumber \\&+\,\gamma \rho \int _0^L {w(x,t)w_t (x,t)} \hbox {d}x\nonumber \\&+\,\frac{\beta k_c }{2}\int _0^L {w^{2}(x,t)} \hbox {d}x \end{aligned}$$
(17)
$$\begin{aligned} V_2 (t)= & {} \frac{c_\mathrm{d} }{2}\left[ {\alpha Lw_x (L,t)+\beta w_t (L,t)+\gamma w(L,t)} \right] ^{2} \nonumber \\&+\,\frac{c_\mathrm{d} }{2}\left[ {\beta w_t (0,t)+\gamma w(0,t)} \right] ^{2} \end{aligned}$$
(18)
$$\begin{aligned} V_3 (t)= & {} \alpha \rho \int _0^L {xw_t (x,t)} w_x (x,t)\hbox {d}x \end{aligned}$$
(19)

Define a new function as

$$\begin{aligned}&\Gamma (t)=\int _0^L \left( w_t^2 (x,t) +w_{xx}^2 (x,t)\right. \\&\left. \quad +\, w_x^2 (x,t)+w^2 (x,t)\right) \hbox {d}x \end{aligned}$$

Then, we have

$$\begin{aligned}&\left( {\frac{\beta }{2}\min \left( {\rho ,EI\left( x \right) ,T,k_\mathrm{c} } \right) -\frac{\gamma \rho }{2}} \right) \Gamma (t)\le V_1 (t)\nonumber \\&\quad \le \left( {\frac{\beta }{2}\max \left( {\rho ,EI\left( x \right) ,T,k_\mathrm{c} } \right) +\frac{\gamma \rho }{2}} \right) \Gamma (t) \end{aligned}$$
(20)

Appling Lemma 1 to Eq. (20) yields

$$\begin{aligned}&\left| {V_3 (t)} \right| \le \alpha \rho L\int _0^L \left( w_t^2 (x,t)+w_x^2 (x,t)\right) \hbox {d}x\nonumber \\&\quad \le s_1 \Gamma (t) \end{aligned}$$
(21)

where \(s_1 =\alpha \rho L\).

Then, it can be obtained that

$$\begin{aligned} -s_1 \Gamma (t)\le V_3 (t)\le s_1 \Gamma (t) \end{aligned}$$
(22)

Combing Eqs. (20) and (22), we further obtain

$$\begin{aligned} s_2 \Gamma (t)\le V_1 (t)+V_3 (t)\le s_3 \Gamma (t) \end{aligned}$$
(23)

with

$$\begin{aligned} s_2= & {} \frac{\beta }{2}\min \left( {\rho ,EI\left( x \right) ,T,k_\mathrm{c} } \right) -\frac{\gamma \rho }{2}-s_1 \end{aligned}$$
(24)
$$\begin{aligned} s_3= & {} \frac{\beta }{2}\max \left( {\rho ,EI\left( x \right) ,T,k_\mathrm{c} } \right) +\frac{\gamma \rho }{2}+s_1 \end{aligned}$$
(25)

where \(s_3 \) is a positive constant, and \(s_2 \) will be positive due to the appropriate choice of parameters \(\alpha \) and \(\beta \).

Given the proposed Lyapunov functional (16), it can be obtained

$$\begin{aligned} s_4 \left( {\Gamma (t)+V_2 (t)} \right) \le V(t)\le s_5 \left( {\Gamma (t)+V_2 (t)} \right) \end{aligned}$$
(26)

where \(s_4 =\min (s_2 ,1)\), \(s_5 =\max (s_3 ,1)\) are positive constants.

Differentiating Eq. (16) V(t) with respect to time t yields

$$\begin{aligned} \dot{V}(t)=\dot{V}_1 (t)+\dot{V}_2 (t)+\dot{V}_3 (t) \end{aligned}$$
(27)

where

$$\begin{aligned} \dot{V}_1 (t)\le & {} -(\beta {c}_\mathrm{d} -\gamma \rho \nonumber \\&-\beta \sigma -\mu _1 \gamma c_\mathrm{d} )\int _0^L {w_t^2 (x,t)} \hbox {d}x \nonumber \\&+\left( {\frac{\beta }{\sigma }+\mu _2 \gamma } \right) \int _0^L {f^{2}(x,t)} \hbox {d}x\nonumber \\&-\left( {rk_\mathrm{c} -\frac{\gamma c_\mathrm{d} }{\mu _1 }-\frac{\gamma }{\mu _2 }} \right) \int _0^L {w^{2}(x,t)} \hbox {d}x \nonumber \\&-\, \gamma T\int _0^L {w_x^2 (x,t)} \hbox {d}x\nonumber \\&-\, \gamma \int _0^L {EI(x)w_{xx}^2 (x,t)} \hbox {d}x\nonumber \\&-\, \beta EI(L)w_{xxx} (L,t)w_t (L,t)) \nonumber \\&+\, \beta EI(0)w_{xxx} (0,t)w_t (0,t)\nonumber \\&+\beta Tw_x (L,t)w_t (L,t)\nonumber \\&-\, \beta Tw_x (0,t)w_t (0,t) \nonumber \\&+\, \gamma Tw(L,t)w_x (L,t)-\gamma Tw(0,t)w_x (0,t) \nonumber \\&-\, \gamma EI(L)w(L,t)w_{xxx} (L,t)\nonumber \\&+\, \gamma EI(0)w(0,t)w_{xxx} (0,t) \end{aligned}$$
(28)

Substituting boundary conditions (3) and (4) into \(\dot{V}_2 (t)\), we obtain

$$\begin{aligned} \dot{V}_2 (t)= & {} \left[ {\beta w_t (0,t)+\gamma w(0,t)} \right] \nonumber \\&\quad \left[ {\begin{array}{l} \gamma c_\mathrm{d} w_t (0,t)+\beta v_t (t)-\beta Tw_{xt} (0,t) \\ +\, \beta \left( {EI(0)w_{xx} (0,t)} \right) _{xt} -\beta k_\mathrm{c} w_t (0,t) \\ \end{array}} \right] \nonumber \\&+ \left[ {\begin{array}{l} \alpha Lw_x (L,t) \\ +\, \beta w_t (L,t)+\gamma w(L,t) \\ \end{array}} \right] \nonumber \\&\quad \left[ {\begin{array}{l} c_\mathrm{d} \alpha Lw_{xt} (L,t)\\ +\, c_\mathrm{d} \gamma w_t (L,t)-\beta k_\mathrm{c} w_t (L,t) \\ +\, \beta \left( {EI(L)w_{xx} (L,t)} \right) _{xt} \\ +\, \beta u_t (t)-\beta Tw_{xt} (L,t) \\ \end{array}} \right] \end{aligned}$$
(29)

Substituting the system Eq. (1) into \(\dot{V}_3 (t)\) and using the boundary conditions (2)–(4), we obtain the derivative of \(V_3 (t)\) along VLFS system trajectory as

$$\begin{aligned}&\dot{V}_3 (t)\le -\left( {\frac{\alpha \rho }{2}-\frac{\alpha c_\mathrm{d} L}{\delta _1 }} \right) \int _0^L {w_t^2 (x,t)} \hbox {d}x\nonumber \\&\quad +\frac{\alpha L}{\delta _2 }\int _0^L {f^{2}(x,t)} \hbox {d}x \nonumber \\&\quad +\frac{\alpha k_\mathrm{c} }{2}\int _0^L {w^2 (x,t)} \hbox {d}x\nonumber \\&\quad -\frac{\alpha }{2}\int _0^L {\left( {4EI(x)-\left( {xEI(x)} \right) _x } \right) w_{xx}^2 (x,t)} \hbox {d}x\nonumber \\&\quad -\left( {\frac{\alpha T}{2}+\frac{\alpha \rho }{2}-\alpha \delta _1 c_\mathrm{d} L-\alpha \delta _2 L} \right) \int _0^L {w_x^2 (x,t)} \hbox {d}x \nonumber \\&\quad +\frac{\alpha TL}{2}w_x^2 (L,t)-\alpha EI(L)Lw_x (L,t)w_{xxx} (L,t) \nonumber \\&\quad -\frac{\alpha k_\mathrm{c} L}{2}w^{2}(L,t)+\frac{\alpha \rho L}{2}w_t^2 (L,t) \end{aligned}$$
(30)

Substituting the proposed law (5) and (6) into Eq. (29) as well as combining Eqs. (28)–(30), we have

$$\begin{aligned}&\dot{V}(t)\le -\left( {\beta c_\mathrm{d} +\frac{\alpha \rho }{2}-\gamma \rho -\beta \sigma -\mu _1 \gamma c_\mathrm{d} -\frac{\alpha c_\mathrm{d} L}{\delta _1 }} \right) \nonumber \\&\qquad \int _0^L {w_t^2 (x,t)} \hbox {d}x\nonumber \\&\quad +\left( {\frac{\beta }{\sigma }+\mu _2 \gamma +\frac{\alpha L}{\delta _2 }} \right) \int _0^L {f^{2}(x,t)} \hbox {d}x\nonumber \\&\quad -\left( {\gamma k_\mathrm{c} -\frac{\gamma c_\mathrm{d} }{\mu _1 }-\frac{\gamma }{\mu _2 }-\frac{\alpha k_\mathrm{c} }{2}} \right) \int _0^L {w^{2}(x,t)} \hbox {d}x \nonumber \\&\quad -\left( {\gamma T+\frac{\alpha T}{2}+\frac{\alpha \rho }{2}-\alpha \delta _1 c_\mathrm{d} L-\alpha \delta _2 L} \right) \int _0^L {w_x^2 (x,t)} \hbox {d}x \nonumber \\&\quad -\left( {2\alpha EI(x)-\frac{\alpha }{2}\left( {xEI(x)} \right) _x +\gamma EI\left( x \right) } \right) \int _0^L {w_{xx}^2 (x,t)} \hbox {d}x \nonumber \\&\quad -\, k\left[ {\alpha Lw_x (L,t)+\beta w_t (L,t)+\gamma w(L,t)} \right] ^{2} \nonumber \\&\quad -\, k_1 \left[ {\beta w_t (0,t)+\gamma w(0,t)} \right] ^{2}\nonumber \\&\quad -\left( {\beta g-\frac{\alpha \rho L}{2}-\frac{\alpha Lg}{\mu _3 }-\frac{\gamma g}{\mu _4 }} \right) w_t^2 (L,t) \nonumber \\&\quad -\left( {\frac{\alpha TL}{2}-\alpha Lg\mu _3 } \right) w_x^2 (L,t)\nonumber \\&\quad -\left( {\frac{\alpha k_\mathrm{c} L}{2}-\gamma g\mu _4 } \right) w_x^2 (L,t) \end{aligned}$$
(31)

where \(K_\mathrm{D} \), g, r, \(\beta \), \(\sigma \), \(\alpha \), \(\delta _1 \), \(\delta _2 \), \(\delta _3 \), \(\delta _4 \) and \(\xi \) are chosen to satisfy the following inequalities:

$$\begin{aligned}&f_1 (\beta , \sigma , \alpha , \delta _i, \mu _i, \mathrm{g}, \gamma )=\beta c_\mathrm{d} +\frac{\alpha \rho }{2}\nonumber \\&\quad -\gamma \rho -\beta \sigma -\mu _1 \gamma c_\mathrm{d} -\frac{\alpha c_\mathrm{d} L}{\delta _1 }>0 \end{aligned}$$
(32)
$$\begin{aligned}&f_2 (\beta ,\sigma ,\alpha ,\delta _i ,\mu _i ,\mathrm{g},\gamma )=\gamma k_\mathrm{c} -\frac{\gamma c_\mathrm{d} }{\mu _1 }\nonumber \\&\quad -\frac{\gamma }{\mu _2 }-\frac{\alpha k_\mathrm{c} }{2}>0 \end{aligned}$$
(33)
$$\begin{aligned}&f_3 (\beta ,\sigma ,\alpha ,\delta _i ,\mu _i ,\mathrm{g},\gamma )=\gamma T+\frac{\alpha T}{2}+\frac{\alpha \rho }{2}\nonumber \\&\quad -\alpha \delta _1 c_\mathrm{d} L-\alpha \delta _2 L>0 \end{aligned}$$
(34)
$$\begin{aligned}&f_4 (\beta ,\sigma ,\alpha ,\delta _i ,\mu _i ,\mathrm{g},\gamma )=\beta g\nonumber \\&\quad -\frac{\alpha \rho L}{2}-\frac{\alpha Lg}{\mu _3 }-\frac{\gamma g}{\mu _4 }>0 \end{aligned}$$
(35)
$$\begin{aligned}&f_5 (\beta ,\sigma ,\alpha ,\delta _i ,\mu _i ,\mathrm{g},\gamma )=\frac{\alpha TL}{2}-\alpha Lg\mu _3 >0 \end{aligned}$$
(36)
$$\begin{aligned}&f_6 (\beta ,\sigma ,\alpha ,\delta _i ,\mu _i ,g,\gamma )=\frac{\alpha k_\mathrm{c} L}{2}-\gamma g\mu _4 >0 \end{aligned}$$
(37)
$$\begin{aligned}&f_7 (\beta ,\sigma ,\alpha ,\delta _i ,\mu _i ,\mathrm{g},\gamma )=2\alpha EI(x)\nonumber \\&\quad -\frac{\alpha }{2}\left( {xEI(x)} \right) _x +\gamma EI\left( x \right) >0 \end{aligned}$$
(38)

Then, we have

$$\begin{aligned}&\dot{V}(t)\le -\lambda _1 \Gamma (t)-\frac{2\min (k,k_1 )}{c_\mathrm{d} }V_2 +\varepsilon \le -\lambda _2\nonumber \\&\quad \left( {\Gamma (t) +V_2 } \right) +\varepsilon \end{aligned}$$
(39)

where \(\varepsilon =\left( {\frac{\beta }{\sigma }+\mu _2 \gamma +\frac{\alpha L}{\delta _2 }} \right) \int _0^L {f^{2}(x,t)} \hbox {d}x\),\(\lambda _1 =\min (f_1 ,f_2 ,f_3 )\) and \(\lambda _2 =\min (\lambda _1 ,\frac{2\min (k,k_1 )}{T})\).

Furthermore, we have

$$\begin{aligned} \dot{V}(t)\le -\lambda V(t)+\varepsilon \end{aligned}$$
(40)

where \(\lambda ={\lambda _2 }/{s_5 }>0\).

By integrating the inequality (40), we obtain

$$\begin{aligned} V(t)\le V(0)e^{-\lambda t}+\frac{\varepsilon }{\lambda } \end{aligned}$$
(41)

It indicates that V(t) is bounded. We have

$$\begin{aligned}&\left( {\frac{\beta T}{2L}\hbox {+}\frac{\beta EI\left( x \right) }{2L^{3}}} \right) w^{2}(x,t)\le \frac{\beta T}{2}\int _0^L {w_x^2 (x,t)} \hbox {d}x\nonumber \\&\quad +\, \frac{\beta EI\left( x \right) }{2}\int _0^L {w_{xx}^2 (x,t)} \hbox {d}x\nonumber \\&\quad \le V_1 (t)\le \frac{1}{s_4 }V(t) \end{aligned}$$
(42)

Rearrangement of the term in the above inequality can yield

$$\begin{aligned} \left| {w(x,t)} \right|\le & {} \sqrt{\frac{1}{\frac{\beta T}{2L}\hbox {+}\frac{\beta EI\left( x \right) }{2L^{3}}}\left( {V(0)e^{-\lambda t}+\frac{\varepsilon }{\lambda }} \right) } \nonumber \\\le & {} \sqrt{\frac{1}{\frac{\beta T}{2L}\hbox {+}\frac{\beta EI\left( x \right) }{2L^{3}}}\left( {V(0)+\frac{\varepsilon }{\lambda }} \right) } \end{aligned}$$
(43)

where w(xt) is uniformly bounded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.S. Hybrid active and passive control of a very large floating beam structure. Nonlinear Dyn 87, 1835–1845 (2017). https://doi.org/10.1007/s11071-016-3156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3156-8

Keywords

Navigation