Nonlinear Dynamics

, Volume 87, Issue 3, pp 1797–1807 | Cite as

Differential cryptanalysis of a novel image encryption algorithm based on chaos and Line map

Original Paper


In this paper, we analyze the security of a chaos-based image encryption algorithm. We find that the algorithm is vulnerable to differential cryptanalysis. The differential cryptanalysis demonstrates that the security of the original scheme depends only on the permutation key instead of on all of the keys, which makes the key space of the cryptosystem greatly reduced. Specifically, \((H\times W+1)\) chosen plain-images can reveal the equivalent permutation key for one-round encryption, where \(H\times W\) is the size of the binary image. The two-way differential comparison method is proposed to break two-round cryptosystem. Basing on differential cryptanalysis, we propose a codebook attack under chosen-ciphertext conditions, design the codebook with \((H\times W)\) differential binary images, and totally break multi-round cryptosystem using XOR operation of \(O(H\times W)\) images. The simulation results indicate that the designed codebook attack is effective. Furthermore, we summarize some characteristics of a class of permutation–diffusion systems that also are vulnerable to the differential attack and the codebook attack.


Chaos-based image encryption Differential cryptanalysis Codebook attack Chosen-plaintext attack Chosen-ciphertext attack 


  1. 1.
    Huang, C.K., Nien, H.H.: Multi chaotic systems based pixel shuffle for image encryption. Opt. Commun. 282(11), 2123–2127 (2009)CrossRefGoogle Scholar
  2. 2.
    Ye, G.: Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recogn. Lett. 31(5), 347–354 (2010)CrossRefGoogle Scholar
  3. 3.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 8(6), 1259–1284 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Sam, I.S., Devaraj, P., Bhuvaneswaran, R.S.: A novel image cipher based on mixed transformed logistic maps. Multimedia Tools Appl. 56(2SI), 315–330 (2012)CrossRefGoogle Scholar
  5. 5.
    Wang, X., Zhao, J., Liu, H.: A new image encryption algorithm based on chaos. Opt. Commun. 285(5), 562–566 (2012)CrossRefGoogle Scholar
  6. 6.
    Wang, X., Teng, L.: An image blocks encryption algorithm based on spatiotemporal chaos. Nonlinear Dyn. 67(1), 365–371 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhou, G., Zhang, D., Liu, Y., Yuan, Y., Liu, Q.: A novel image encryption algorithm based on chaos and Line map. Neurocomputing 169(SI), 150–157 (2015)CrossRefGoogle Scholar
  8. 8.
    Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(67), 557–566 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sun, Y., Chen, L., Xu, R., Kong, R.: An image encryption algorithm utilizing julia sets and hilbert curves. Plos ONE 9(1), e84655 (2014)CrossRefGoogle Scholar
  10. 10.
    Tang, Z., Zhang, X., Lan, W.: Efficient image encryption with block shuffling and chaotic map. Multimedia Tools Appl. 74(15), 5429–5448 (2015)CrossRefGoogle Scholar
  11. 11.
    Wu, X., Li, Y., Kurths, J.: A new color image encryption scheme using CML and a fractional-order chaotic system. Plos ONE 10, e01196603 (2015)Google Scholar
  12. 12.
    Wang, X., Xu, D.: A novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 75(1–2), 345–353 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Liu, C., Xu, D., Liu, C.: Image encryption scheme using chaos and simulated annealing algorithm. Nonlinear Dyn. 84(3), 1–13 (2016)MathSciNetGoogle Scholar
  14. 14.
    Chen, J., Zhu, Z., Fu, C., Yu, H.: An improved permutation–diffusion type image cipher with a chaotic orbit perturbing mechanism. Opt. Express 21(23), 27873–27890 (2013)CrossRefGoogle Scholar
  15. 15.
    Chen, J.X., Zhu, Z.L., Fu, C., Yu, H., Zhang, L.B.: A fast chaos-based image encryption scheme with a dynamic state variables selection mechanism. Commun. Nonlinear Sci. Numer. Simul. 20(3), 846–860 (2015)CrossRefGoogle Scholar
  16. 16.
    Ye, G., Huang, X.: A novel block chaotic encryption scheme for remote sensing image. Multimedia Tools Appl. 75(18), 11433 (2015). doi: 10.1007/s11042-015-2861-5
  17. 17.
    Wang, Y., Wong, K., Liao, X., Xiang, T.: A block cipher with dynamic S-boxes based on tent map. Commun. Nonlinear Sci. 14(7), 3089–3099 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Xu, S., Chen, X., Zhang, R., Yang, Y., Guo, Y.: An improved chaotic cryptosystem based on circular bit shift and XOR operations. Phys. Lett. A 376(10–11), 1003–1010 (2012)CrossRefMATHGoogle Scholar
  19. 19.
    Li, S., Li, C., Chen, G., Bourbakis, N.G., Lo, K.T.: A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. Image Commun. 23(3), 212–223 (2008)CrossRefGoogle Scholar
  20. 20.
    Li, C., Lo, K.: Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Process. 91(4), 949–954 (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Rhouma, R., Belghith, S.: Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372(38), 5973–5978 (2008)Google Scholar
  22. 22.
    Cokal, C., Solak, E.: Cryptanalysis of a chaos-based image encryption algorithm. Phys. Lett. A 373(15), 1357–1360 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wang, B., Wei, X., Zhang, Q.: Cryptanalysis of an image cryptosystem based on logistic map. Optik 124(14), 1773–1776 (2013)CrossRefGoogle Scholar
  24. 24.
    Tu, G., Liao, X., Xiang, T.: Cryptanalysis of a color image encryption algorithm based on chaos. Optik 124(22), 5411–5415 (2013)Google Scholar
  25. 25.
    Solak, E., Cokal, C., Yildiz, O.T., Biyikoglu, T.: Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20(5), 1405–1413 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Chen, L., Wang, S.: Differential cryptanalysis of a medical image cryptosystem with multiple rounds. Comput. Biol. Med. 65, 69–75 (2015)CrossRefGoogle Scholar
  27. 27.
    Özkaynak, F., Yavuz, S.: Analysis and improvement of a novel image fusion encryption algorithm based on dna sequence operation and hyper-chaotic system. Nonlinear Dyn. 78(2), 1311–1320 (2014)CrossRefMATHGoogle Scholar
  28. 28.
    Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Zhang, Y., Xiao, D.: Cryptanalysis of S-box-only chaotic image ciphers against chosen plaintext attack. Nonlinear Dyn. 72(4), 751–756 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yap, W., Phan, R.C.W., Yau, W., Heng, S.: Cryptanalysis of a new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 80(3), 1483–1491 (2015)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zhu, C., Xu, S., Hu, Y., Sun, K.: Breaking a novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 79, 1511–1518 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Lei Chen
    • 1
  • Bing Ma
    • 1
  • Xiaohong Zhao
    • 1
  • Shihong Wang
    • 1
  1. 1.School of SciencesBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations