Nonlinear Dynamics

, Volume 87, Issue 2, pp 1253–1270 | Cite as

Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance

Original Paper


A novel approach applying the extended prescribed performance control (PPC) and the wave-based time domain passivity approach (wave-based TDPA) to teleoperation systems is proposed. With the extended PPC, a teleoperation system can synchronize position, velocity and force. Moreover, by combining with the extended wave-based TDPA, the overall system’s passivity is guaranteed in the presence of arbitrary time delays. The system’s stability and performance are analyzed by using Lyapunov functions. The method is validated through experimental work based on a 3-DOF bilateral teleoperation system. The experimental results show that the proposed control algorithm can robustly guarantee the master–slave system’s passivity and simultaneously provide high tracking performance of position, velocity and measured force signals.


Bilateral teleoperation Prescribed performance control (PPC) time domain passivity approach (TDPA)  Wave variable Passivity Time-varying delay 


  1. 1.
    Passenbarg, C., Peer, A., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20, 787–801 (2010)CrossRefGoogle Scholar
  2. 2.
    Chopra, N., Spong, M.W., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44(8), 2142–2148 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anderson, R., Spong, M.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anderson, R.J., Spong, M.W.: Asymptotic stability for force reflecting teleoperators with time delay. Int. J. Robot. Res. 11(2), 135–149 (1992)CrossRefGoogle Scholar
  5. 5.
    Ryu, J., Kwon, D., Hannaford, B.: Stable teleoperation with timedomain passivity control. IEEE Trans. Robot. Autom. 20(2), 365–373 (2004)CrossRefGoogle Scholar
  6. 6.
    Artigas, J., Ryu, J.H., Preusche, C.: Time domain passivity control for position–position teleoperation architectures. Presence Teleoper. Virtual Environ. 19(5), 482–497 (2010)CrossRefGoogle Scholar
  7. 7.
    Ryu, J.-H., Artigas, J., Preusche, C.: A passive bilateral control scheme for a teleoperator with time-varying communication delay. Mechatronics 20(7), 812–823 (2010)CrossRefGoogle Scholar
  8. 8.
    Li, H., Tadano, K., Kawashima, K.: Model-based passive bilateral teleoperation with time delay. Trans. Inst. Meas Control 36(8), 1010–1023 (2014)Google Scholar
  9. 9.
    Li, H., Kawashima, K.: Bilateral teleoperation with delayed force feedback using time domain passivity controller. Robot. Comput. Integr. Manuf. 37, 188–196 (2015)CrossRefGoogle Scholar
  10. 10.
    Rebelo, J., Schiele, A.: Time domain passivity controller for 4-channel time-delay bilateral teleoperation. IEEE Trans. Haptics 8(1), 79–89 (2015)CrossRefGoogle Scholar
  11. 11.
    Ye, Y., Pan, Y.-J., Hilliard, T.: Bilateral teleoperation with time-varying delay: a communication channel passification approach. IEEE/ASME Trans. Mechatron. 18(4), 1431–1434 (2013)CrossRefGoogle Scholar
  12. 12.
    Chawda, V., OMalley, M.K.: Position synchronization in bilateral teleoperation under time-varying communication delays. IEEE/ASME Trans. Mechatron. 20(1), 245–253 (2015)CrossRefGoogle Scholar
  13. 13.
    Sun, D., Naghdy, F., Du, H.: Wave-variable-based passivity control of four-channel nonlinear bilateral teleoperation system under time delays. IEEE/ASME Trans. Mechatron. 21(1), 238–253 (2016)CrossRefGoogle Scholar
  14. 14.
    Kelly, R.: A tuning procedure for stable PID control of robot manipulators. Robotica 13(2), 141–148 (1995)CrossRefGoogle Scholar
  15. 15.
    Ilchmann, A., Ryan, E.P., Trenn, S.: Tracking control: performance funnels and prescribed transient behavior. Syst. Control Lett. 54(7), 655–670 (2005)CrossRefMATHGoogle Scholar
  16. 16.
    Bechlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)Google Scholar
  17. 17.
    Xie, X.L., Hou, Z.G., Cheng, L., Ji, C., Tan, M., Yu, H.: Adaptive neural network tracking control of robot manipulators with prescribed performance. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 225(6), 790–797 (2011)Google Scholar
  18. 18.
    Bechlioulis, C.P., Doulgeri, Z., Rovithakis, G.A.: Neuroadaptive force/position control with prescribed performance and guaranteed contact maintenance. IEEE Trans. Neural Netw. 21(12), 1857–1868 (2010)CrossRefGoogle Scholar
  19. 19.
    Karayiannidis, Y., Doulgeri, Z.: Model-free robot position regulation and tracking with prescribed performance guarantees. Robot. Auton. Syst. 60(2), 214–226 (2012)CrossRefGoogle Scholar
  20. 20.
    Kostarigka, A.K., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica 49(5), 1137–1147 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yang, Y., Changchun, H., Guan, X.: Adaptive prescribed performance control for nonlinear networked teleoperation system under time delay. In: 2014 33rd Chinese Control Conference (CCC). IEEE (2014)Google Scholar
  22. 22.
    Yang, Y., et al.: Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J. Frankl. Inst. 352(5), 1850–1866 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yang, Y., Changchun, H., Guan, X.: Synchronization control for bilateral teleoperation system with prescribed performance under asymmetric time delay. Nonlinear Dyn. 81, 1–13 (2015)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nuno, E., Ortega, R., Barbanov, N., Basanez, L.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)CrossRefGoogle Scholar
  25. 25.
    Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006)CrossRefGoogle Scholar
  26. 26.
    Hua, C.C., Liu, X.P.: Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Trans. Robot. 26(5), 925–932 (2010)CrossRefGoogle Scholar
  27. 27.
    Hashemzadeh, F., Hassanzadeh, I., Tavakoli, M.: Teleoperation in the presence of varying time delays and sandwich linearity in actuators. Automatica 49(9), 2813–2821 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hua, C., Yang, Y.: Bilateral teleoperation design with/without gravity measurement. IEEE Trans. Instrum. Meas. 61(12), 3136–3146 (2012)CrossRefGoogle Scholar
  29. 29.
    Nuño, E., Basañez, L., Ortega, R., Spong, M.W.: Position tracking for non-linear teleoperators with variable time delay. Int. J. Robot. Res. 28(7), 895–910 (2009)CrossRefGoogle Scholar
  30. 30.
    Nuño, E., Basañez, L., Romeo, O.: Passivity-based control for bilateral teleoperation: A tutorial. Automatica 47(3), 485–495 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.National University of SingaporeSingaporeSingapore
  2. 2.University of WollongongWollongongAustralia

Personalised recommendations