Skip to main content
Log in

Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel approach applying the extended prescribed performance control (PPC) and the wave-based time domain passivity approach (wave-based TDPA) to teleoperation systems is proposed. With the extended PPC, a teleoperation system can synchronize position, velocity and force. Moreover, by combining with the extended wave-based TDPA, the overall system’s passivity is guaranteed in the presence of arbitrary time delays. The system’s stability and performance are analyzed by using Lyapunov functions. The method is validated through experimental work based on a 3-DOF bilateral teleoperation system. The experimental results show that the proposed control algorithm can robustly guarantee the master–slave system’s passivity and simultaneously provide high tracking performance of position, velocity and measured force signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Passenbarg, C., Peer, A., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20, 787–801 (2010)

    Article  Google Scholar 

  2. Chopra, N., Spong, M.W., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44(8), 2142–2148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, R., Spong, M.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  4. Anderson, R.J., Spong, M.W.: Asymptotic stability for force reflecting teleoperators with time delay. Int. J. Robot. Res. 11(2), 135–149 (1992)

    Article  Google Scholar 

  5. Ryu, J., Kwon, D., Hannaford, B.: Stable teleoperation with timedomain passivity control. IEEE Trans. Robot. Autom. 20(2), 365–373 (2004)

    Article  Google Scholar 

  6. Artigas, J., Ryu, J.H., Preusche, C.: Time domain passivity control for position–position teleoperation architectures. Presence Teleoper. Virtual Environ. 19(5), 482–497 (2010)

    Article  Google Scholar 

  7. Ryu, J.-H., Artigas, J., Preusche, C.: A passive bilateral control scheme for a teleoperator with time-varying communication delay. Mechatronics 20(7), 812–823 (2010)

    Article  Google Scholar 

  8. Li, H., Tadano, K., Kawashima, K.: Model-based passive bilateral teleoperation with time delay. Trans. Inst. Meas Control 36(8), 1010–1023 (2014)

  9. Li, H., Kawashima, K.: Bilateral teleoperation with delayed force feedback using time domain passivity controller. Robot. Comput. Integr. Manuf. 37, 188–196 (2015)

    Article  Google Scholar 

  10. Rebelo, J., Schiele, A.: Time domain passivity controller for 4-channel time-delay bilateral teleoperation. IEEE Trans. Haptics 8(1), 79–89 (2015)

    Article  Google Scholar 

  11. Ye, Y., Pan, Y.-J., Hilliard, T.: Bilateral teleoperation with time-varying delay: a communication channel passification approach. IEEE/ASME Trans. Mechatron. 18(4), 1431–1434 (2013)

    Article  Google Scholar 

  12. Chawda, V., OMalley, M.K.: Position synchronization in bilateral teleoperation under time-varying communication delays. IEEE/ASME Trans. Mechatron. 20(1), 245–253 (2015)

    Article  Google Scholar 

  13. Sun, D., Naghdy, F., Du, H.: Wave-variable-based passivity control of four-channel nonlinear bilateral teleoperation system under time delays. IEEE/ASME Trans. Mechatron. 21(1), 238–253 (2016)

    Article  Google Scholar 

  14. Kelly, R.: A tuning procedure for stable PID control of robot manipulators. Robotica 13(2), 141–148 (1995)

    Article  Google Scholar 

  15. Ilchmann, A., Ryan, E.P., Trenn, S.: Tracking control: performance funnels and prescribed transient behavior. Syst. Control Lett. 54(7), 655–670 (2005)

    Article  MATH  Google Scholar 

  16. Bechlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)

  17. Xie, X.L., Hou, Z.G., Cheng, L., Ji, C., Tan, M., Yu, H.: Adaptive neural network tracking control of robot manipulators with prescribed performance. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 225(6), 790–797 (2011)

    Google Scholar 

  18. Bechlioulis, C.P., Doulgeri, Z., Rovithakis, G.A.: Neuroadaptive force/position control with prescribed performance and guaranteed contact maintenance. IEEE Trans. Neural Netw. 21(12), 1857–1868 (2010)

    Article  Google Scholar 

  19. Karayiannidis, Y., Doulgeri, Z.: Model-free robot position regulation and tracking with prescribed performance guarantees. Robot. Auton. Syst. 60(2), 214–226 (2012)

    Article  Google Scholar 

  20. Kostarigka, A.K., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica 49(5), 1137–1147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, Y., Changchun, H., Guan, X.: Adaptive prescribed performance control for nonlinear networked teleoperation system under time delay. In: 2014 33rd Chinese Control Conference (CCC). IEEE (2014)

  22. Yang, Y., et al.: Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J. Frankl. Inst. 352(5), 1850–1866 (2015)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Changchun, H., Guan, X.: Synchronization control for bilateral teleoperation system with prescribed performance under asymmetric time delay. Nonlinear Dyn. 81, 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nuno, E., Ortega, R., Barbanov, N., Basanez, L.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Article  Google Scholar 

  25. Lee, D., Spong, M.W.: Passive bilateral teleoperation with constant time delay. IEEE Trans. Robot. 22(2), 269–281 (2006)

    Article  Google Scholar 

  26. Hua, C.C., Liu, X.P.: Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Trans. Robot. 26(5), 925–932 (2010)

    Article  Google Scholar 

  27. Hashemzadeh, F., Hassanzadeh, I., Tavakoli, M.: Teleoperation in the presence of varying time delays and sandwich linearity in actuators. Automatica 49(9), 2813–2821 (2013)

    Article  MathSciNet  Google Scholar 

  28. Hua, C., Yang, Y.: Bilateral teleoperation design with/without gravity measurement. IEEE Trans. Instrum. Meas. 61(12), 3136–3146 (2012)

    Article  Google Scholar 

  29. Nuño, E., Basañez, L., Ortega, R., Spong, M.W.: Position tracking for non-linear teleoperators with variable time delay. Int. J. Robot. Res. 28(7), 895–910 (2009)

    Article  Google Scholar 

  30. Nuño, E., Basañez, L., Romeo, O.: Passivity-based control for bilateral teleoperation: A tutorial. Automatica 47(3), 485–495 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Naghdy, F. & Du, H. Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance. Nonlinear Dyn 87, 1253–1270 (2017). https://doi.org/10.1007/s11071-016-3113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3113-6

Keywords

Navigation