Skip to main content

Advertisement

Log in

Vibration control of a flexible marine riser with joint angle constraint

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the constrained problem of the joint angles for a flexible marine riser is investigated. Boundary control based on the integral-barrier Lyapunov function is achieved by three actuators equipped at the top boundary of the riser. Under the time-varying disturbances, the designed control can suppress the vibration of the riser and ensure the joint angles in the constrained ranges. The stability is proved under the designed control laws. Numerical simulations are given to illustrate the effectiveness of the designed control laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

L :

Length of the riser

M :

Mass of the vessel

\(\rho \) :

Uniform mass per unit length of the riser

EI:

Bending stiffness of the riser

EA:

Axial stiffness of the riser

T :

Tension of the riser

\(C_x,C_y,C_z\) :

Constraints on \(x^{\prime }_L\), \(y^{\prime }_L\) and \(z^{\prime }_L\)

\(u_x(t),u_y(t),u_z(t)\) :

Boundary control inputs in XYZ directions

\(f_x(s,t),f_y(s,t),f_z(s,t)\) :

Distributed disturbances of the riser in XYZ directions

\(d_x(t),d_y(t),d_z(t)\) :

Boundary disturbances of the riser in XYZ directions

x(st), y(st), z(st):

Displacements in XYZ directions

References

  1. Dai, S.-L., Wang, C., Luo, F.: Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inf. 8(4), 801–810 (2012)

    Article  Google Scholar 

  2. How, B.V.E., Ge, S.S., Choo, Y.S.: Active control of flexible marine risers. J. Sound Vib. 320, 758–776 (2009)

    Article  Google Scholar 

  3. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50(3), 781–794 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19(1), 39–52 (1984)

    Article  MATH  Google Scholar 

  5. Oueini, S.S., Nayfeh, A.H., Pratt, J.R.: A nonlinear vibration absorber for flexible structures. Nonlinear Dyn. 15(3), 259–282 (1998)

    Article  MATH  Google Scholar 

  6. Nayfeh, S.A., Nayfeh, A.H., Mook, D.T.: Nonlinear response of a taut string to longitudinal and transverse end excitation. J. Vib. Control 1(3), 307–334 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Do, K.D., Pan, J.: Boundary control of transverse motion of marine risers with actuator dynamics. J. Sound Vib. 318, 768–791 (2008)

    Article  Google Scholar 

  8. Do, K.D., Pan, J.: Boundary control of three-dimensional inextensible marine risers. J. Sound Vib. 327(3–5), 299–321 (2009)

    Article  Google Scholar 

  9. He, W., Sun, C., Ge, S.S.: Top tension control of a flexible marine riser by using integral-barrier Lyapunov function. IEEE/ASME Trans. Mechatron. 2(20), 497–505 (2015)

    Article  Google Scholar 

  10. Wu, H.-N., Wang, J.-W.: Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics. Nonlinear Dyn. 72(3), 615–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J.-W., Wu, H.-N., Li, H.-X.: Fuzzy control design for nonlinear ODE-hyperbolic PDE cascaded systems: a fuzzy and entropy-like Lyapunov function approach. IEEE Trans. Fuzzy Syst. 22, 1313–1324 (2014)

    Article  Google Scholar 

  12. Wang, J.-W., Wu, H.-N., Li, H.-X.: Stochastically exponential stability and stabilization of uncertain linear hyperbolic pde systems with Markov jumping parameters. Automatica 48, 569–576 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, B., Wu, H.-N., Li, H.-X.: Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 26(4), 684–696 (2015)

    Article  MathSciNet  Google Scholar 

  14. Wang, N., Wu, H.-N., Guo, L.: Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles. Nonlinear Dyn. 1(1), 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ge, S.S., Lee, T.H., Zhu, G.: A nonlinear feedback controller for a single-link flexible manipulator based on a finite element model. J. Robotic Syst. 14(3), 165–178 (1997)

    Article  MATH  Google Scholar 

  16. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inform. (2016). doi:10.1109/TII.2016.2608739

  17. Armaou, A., Christofides, P.: Wave suppression by nonlinear finite-dimensional control. Chem. Eng. Sci. 55(14), 2627–2640 (2000)

    Article  Google Scholar 

  18. Chritofides, P., Armaou, A.: Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control. Syst. Control Lett. 39(4), 283–294 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Balas, M.J.: Feedback control of flexible systems. IEEE Trans. Autom. Control 23, 673–679 (1978)

    Article  MATH  Google Scholar 

  20. Vandegrift, M.W., Lewis, F.L., Zhu, S.Q.: Flexible-link robot arm control by a feedback linearization/singular perturbation approach. J. Robotic Syst. 11(7), 591–603 (1994)

  21. Sun, C., He, W., Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass mode. IEEE Trans. Syst. Man Cybern. Syst. (2016). doi:10.1109/TSMC.2016.2562506

    Google Scholar 

  22. Balas, M.J.: Active control of flexible systems. J. Optim. Theory Appl. 23(3), 415–436 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, Q.C., Hong, K.S.: Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking. J. Sound Vib. 331(13), 3006–3019 (2012)

    Article  Google Scholar 

  24. Nguyen, Q.C., Hong, K.-S.: Transverse vibration control of axially moving membranes by regulation of axial velocity. IEEE Trans. Control Syst. Technol. 20(4), 1124–1131 (2012)

    Article  MathSciNet  Google Scholar 

  25. Guo, B.-Z., Jin, F.-F.: Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Trans. Autom. Control 60(3), 824–830 (2015)

    Article  MathSciNet  Google Scholar 

  26. Jin, F.-F., Guo, B.-Z.: Lyapunov approach to output feedback stabilization for the Euler–Bernoulli beam equation with boundary input disturbance. Automatica 52(1), 95–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, K.-J., Hong, K.-S., Matsuno, F.: Robust boundary control of an axially moving string by using a PR transfer function. IEEE Trans. Autom. Control 50(12), 2053–2058 (2005)

    Article  MathSciNet  Google Scholar 

  28. Wu, Y., Xue, X., Shen, T.: Absolute stability of the Kirchhoff string with sector boundary control. Automatica 50(7), 1915–1921 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. He, W., Zhang, S., Ge, S.S.: Robust adaptive control of a thruster assisted position mooring system. Automatica 50(7), 1843–1851 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, Q., Yu, T., Jiang, D.: Robust \(h_\infty \) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system. ISA Trans. 59, 55–64 (2015)

    Article  Google Scholar 

  31. Kang, Y., Zhai, D.-H., Liu, G.-P., Zhao, Y.-B., Zhao, P.: Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching. IEEE Trans. Autom. Control 59(6), 1511–1523 (2014)

    Article  MathSciNet  Google Scholar 

  32. Kang, Y., Zhai, D.-H., Liu, G.-P., Zhao, Y.-B.: On input-to-state stability of switched stochastic nonlinear systems under extended asynchronous switching. IEEE Trans. Cybern. 46(5), 1092–1105 (2016)

    Article  Google Scholar 

  33. Guo, Q., Yu, T., Jiang, D.: High-gain observer-based output feedback control of single-rod electro-hydraulic actuator. IET Control Theory Appl. 9(16), 2395–2404 (2015)

    Article  MathSciNet  Google Scholar 

  34. Li, Y., Ge, S.S.: Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mechatron. 19(3), 1007–1014 (2014)

    Article  Google Scholar 

  35. Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2004–2016 (2014)

    Article  Google Scholar 

  36. Gong, D., Lewis, F.L., Wang, L., Xu, K.: Synchronization for an array of neural networks with hybrid coupling by a novel pinning control strategy. Neural Netw. 77, 41–50 (2016)

    Article  Google Scholar 

  37. Zhang, S., He, W., Huang, D.: Active vibration control for a flexible string system with input backlash. IET Control Theory Appl. 10(7), 800–805 (2016)

    Article  MathSciNet  Google Scholar 

  38. Wang, J.-M., Liu, J.-J., Ren, B., Chen, J.: Sliding mode control to stabilization of cascaded heat PDE–ODE systems subject to boundary control matched disturbance. Automatica 52, 23–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Paranjape, A.A., Guan, J., Chung, S.-J., Krstic, M.: PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans. Robotics 29(3), 625–640 (2013)

    Article  Google Scholar 

  40. Bernard, P., Krstic, M.: Adaptive output-feedback stabilization of non-local hyperbolic pdes. Automatica 50(10), 2692–2699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu, Z., Liu, J.-K., He, W.: Adaptive boundary control of a flexible manipulator with input saturation. Int. J. Control 89(6), 1191–1202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. He, W., Zhang, S.: Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans. Control Syst. Technol. (2016). doi:10.1109/TCST.2016.2536708

    Google Scholar 

  43. Zhao, Z., Liu, Y., He, W., Fei, L.: Adaptive boundary control of an axially moving belt system with high acceleration/deceleration. Int. J. Syst. Sci. 10(11), 1299–1306 (2016)

    MathSciNet  Google Scholar 

  44. Wu, H.-N., Wang, J.-W.: Static output feedback control via pde boundary and ode measurements in linear cascaded ode-beam systems. Automatica 50(11), 2787–2798 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.-S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. He, W., He, X., Ge, S.S.: Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Trans. Mechatron. 21(1), 254–265 (2016)

    Google Scholar 

  47. Gao, Y., Wu, H., Wang, J., Guo, L.: Feedback control design with vibration suppression for flexible air-breathing hypersonic vehicles. Sci. China Inf. Sci. 57(3), 1–14 (2014)

    Article  MATH  Google Scholar 

  48. He, W., Nie, S., Meng, T., Liu, Y.-J.: Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Trans. Control Syst. Technol. (2016). doi:10.1109/TCST.2016.2577001

  49. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. He, W., Ge, S.S., Huang, D.: Modeling and vibration control for a nonlinear moving string with output constraint. IEEE/ASME Trans. Mechatron. 20(4), 1886–1897 (2015)

    Article  Google Scholar 

  51. Tee, K.P., Ge, S.S., Tay, E.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. He, W., Yin, Z., Sun, C.: Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2016.2554621

  53. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  55. He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Ind. Electron. 62(8), 5023–5030 (2015)

    Article  Google Scholar 

  56. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading, Mass (1951)

  57. Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., Zhang, F.: Lyapunov Based Control of Mechanical Systems. Birkhauser, Boston (2000)

    Book  MATH  Google Scholar 

  58. Faltinsen, O.M.: Sea Loads on Ships and Offshore Structures. Cambridge University Press, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant 61403063, the National Basic Research Program of China (973 Program) under Grant 2014CB744206 and the Fundamental Research Funds for the China Central Universities of UESTC under Grant ZYGX2015J120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., He, X. & Yang, C. Vibration control of a flexible marine riser with joint angle constraint. Nonlinear Dyn 87, 617–632 (2017). https://doi.org/10.1007/s11071-016-3064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3064-y

Keywords

Navigation