Nonlinear Dynamics

, Volume 87, Issue 1, pp 587–604 | Cite as

Nonlinear dynamic analysis of electrically actuated viscoelastic bistable microbeam system

  • Lei Li
  • Qi-chang Zhang
Original Paper


Viscoelastic phenomena widely exist in MEMS materials, which may have certain effects on transition mechanism of nonlinear jumping phenomena and transient chaotic behaviors. This article aims to theoretically investigate the static and dynamic characteristics of electrically actuated viscoelastic bistable microbeam via a low-dimensional model. An improved single-degree-of-freedom model to describe microbeam-based resonators is obtained by using Fractional Kelvin constitutive model, Hamilton’s principle and Galerkin method. Through static bifurcation analysis, three kinds of parameter conditions of the bistable system are obtained, and potential energy function of the Hamiltonian system is theoretically derived. The influence of fractional viscoelasticity on dynamic pull-in phenomena is distinguished from the viewpoint of energy. Then, the method of multiple scales is applied to determine the response and stability of the system for small vibration amplitude and AC voltage. The influence of fractional viscoelasticity on amplitude, frequency and bifurcation behavior is investigated. Results show that compared with the elastic material, nonlinear phenomenon becomes weak, resonance frequency increases and amplitude decreases in the viscoelastic system. Besides, the numerical discretization method of fractional derivative is given to verify theoretical results. To study the influence of fractional viscoelasticity on complicated vibration, Melnikov method is applied to predict the existence of chaos, and numerical simulation is carried out to find the stable regions, chaotic regions and dynamic pull-in regions by using bifurcation diagrams with local maximum method. Rational increase in material modulus ratio parameter and fractional order is effective to reduce the possibility of chaos and dynamic pull-in. This analysis has the potential of developing parameter design in MEMS.


Multiple scales MEMS Fractional derivative Melnikov method Galerkin discretization Nonlinear dynamics 



The work was supported by the National Natural Science Foundation of China (Grant No. 11372210) and Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110010)


  1. 1.
    Kouravand, S.: Design and modeling of some sensing and actuating mechanisms for MEMS applications. Appl. Math. Model. 35, 5173–5181 (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst.-Trans. ASME. 132, 034001 (2010)CrossRefGoogle Scholar
  3. 3.
    Jung, J., Kim, P., Lee, J.-I., Seok, J.: Nonlinear dynamic and energetic characteristics of piezoelectric energy harvester with two rotatable external magnets. Int. J. Mech. Sci. 92, 206–222 (2015)CrossRefGoogle Scholar
  4. 4.
    Mestrom, R.M.C., Fey, R.H.B., van Beek, J.T.M., Phan, K.L., Nijmeijer, H.: Modelling the dynamics of a MEMS resonator: simulations and experiments. Sens. Actuators A Phys. 142, 306–315 (2008)CrossRefGoogle Scholar
  5. 5.
    Song, Z.K., Li, H.X., Sun, K.B.: Adaptive dynamic surface control for MEMS triaxial gyroscope with nonlinear inputs. Nonlinear Dyn. 78, 173–182 (2014)CrossRefMATHGoogle Scholar
  6. 6.
    Park, K., Chen, Q., Lai, Y.C.: Energy enhancement and chaos control in microelectromechanical systems. Phys. Rev. E. 77, 026210 (2008)CrossRefGoogle Scholar
  7. 7.
    Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2006)CrossRefMATHGoogle Scholar
  8. 8.
    Schmid, S., Senn, P., Hierold, C.: Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sens. Actuators A Phys. 145–146, 442–448 (2008)CrossRefGoogle Scholar
  9. 9.
    Kato, Y., Sekitani, T., Takamiya, M.T., Doi, M., Asaka, K., Sakurai, T., Someya, T.: Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans. Electron. Dev. 54, 202–209 (2007)CrossRefGoogle Scholar
  10. 10.
    Bachmann, D., Schöberle, B., Kühne, S., Leiner, Y., Hierold, C.: Fabrication and characterization of folded SU-8 suspensions for MEMS applications. Sens. Actuators A Phys. 130–131, 379–386 (2006)CrossRefGoogle Scholar
  11. 11.
    Bethe, K., Baumgarten, D., Frank, J.: Creep of sensor’s elastic elements: metals versus non-metals. Sens. Actuators A Phys. 21, 844–849 (1990)CrossRefGoogle Scholar
  12. 12.
    Haghighi, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15, 3091–3099 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187–218 (2014)CrossRefGoogle Scholar
  14. 14.
    Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759–766 (2002)CrossRefGoogle Scholar
  15. 15.
    Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12, 672–680 (2003)CrossRefGoogle Scholar
  16. 16.
    Krylov, S.: Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures. Int. J. Nonlinear Mech. 42, 626–642 (2007)CrossRefGoogle Scholar
  17. 17.
    Lenci, S., Rega, G.: Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16, 390–401 (2006)CrossRefGoogle Scholar
  18. 18.
    Xie, W.C., Lee, H.P., Lim, S.P.: Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn. 31, 243–256 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Luo, A.C.J., Wang, F.Y.: Nonlinear dynamics of a micro-electro-mechanical system with time-varying capacitors. J. Vib. Acoust. 126, 77 (2004)CrossRefGoogle Scholar
  20. 20.
    Ilyas, S., Ramini, A., Arevalo, A., Younis, M.I.: An experimental and theoretical investigation of a micromirror under mixed-frequency excitation. J. Microelectromech. Syst. 24, 1124–1131 (2015)CrossRefGoogle Scholar
  21. 21.
    Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19, 647–656 (2010)CrossRefGoogle Scholar
  22. 22.
    Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003)CrossRefMATHGoogle Scholar
  23. 23.
    Alsaleem, F.M., Younis, M.I.: Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Mater. Struct. 19, 035016 (2010)CrossRefGoogle Scholar
  24. 24.
    Masri, K.M., Younis, M.I.: Investigation of the dynamics of a clamped-clamped microbeam near symmetric higher order modes using partial electrodes. Int. J. Dyn. Control 3, 173–182 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2006)CrossRefMATHGoogle Scholar
  26. 26.
    Ouakad, H.M., Younis, M.I.: The dynamic behavior of MEMS arch resonators actuated electrically. Int. J. Nonlinear Mech. 45, 704–713 (2010)CrossRefGoogle Scholar
  27. 27.
    Tuck, K., Jungen, A., Geisberger, A., Ellis, M., Skidmore, G.: A study of creep in polysilicon MEMS devices. J. Eng. Mater. Technol. 127, 90–96 (2005)CrossRefGoogle Scholar
  28. 28.
    Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chen, C., Hu, H., Dai, L.: Nonlinear behavior and characterization of a piezoelectric laminated microbeam system. Commun. Nonlinear Sci. Numer. Simul. 18, 1304–1315 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Dubourg, G., Dufour, I., Pellet, C., Ayela, C.: Optimization of the performances of SU-8 organic microcantilever resonators by tuning the viscoelastic properties of the polymer. Sens. Actuators B Chem. 169, 320–326 (2012)CrossRefGoogle Scholar
  31. 31.
    Leung, A.Y.T., Yang, H.X., Zhu, P., Guo, Z.J.: Steady state response of fractionally damped nonlinear viscoelastic arches by residue harmonic homotopy. Comput. Struct. 121, 10–21 (2013)CrossRefGoogle Scholar
  32. 32.
    Tékam Oumbé, G.T., Kwuimy, C.A., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos 25, 013112 (2015)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Fu, Y.-M., Zhang, J.: Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam. Acta Mech. Sin. 25, 211–218 (2008)CrossRefMATHGoogle Scholar
  34. 34.
    Zhang, J., Fu, Y.M.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47, 1649–1658 (2012)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Makris, N.: Three-dimensional constitutive viscoelastic law with fractional order time derivatives. J Rheol 41, 1007–1020 (1997)CrossRefGoogle Scholar
  36. 36.
    Zhu, Z.Y., Li, G.G., Cheng, C.J.: A numerical method for fractional integral with applications. Appl. Math. Mech. 24, 373–384 (2003)CrossRefMATHGoogle Scholar
  37. 37.
    Yao, Q.Z., Liu, L.C., Yan, Q.F.: Quasi-static analysis of beam described by fractional derivative kelvin viscoelastic model under lateral load. Adv. Mater. Res. 189–193, 3391–3394 (2011)CrossRefGoogle Scholar
  38. 38.
    Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 010801–0108052 (2010)CrossRefGoogle Scholar
  39. 39.
    Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S., El-Borgi, S.: Dynamics and global stability of beam-based electrostatic microactuators. J. Vib. Control 16, 721–748 (2010)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Han, J., Zhang, Q., Wang, W.: Static bifurcation and primary resonance analysis of a MEMS resonator actuated by two symmetrical electrodes. Nonlinear Dyn. 80, 1585–1599 (2015)CrossRefGoogle Scholar
  41. 41.
    Leung, A.Y.T., Yang, H.X., Chen, J.Y.: Parametric bifurcation of a viscoelastic column subject to axial harmonic force and time-delayed control. Comput. Struct. 136, 47–55 (2014)CrossRefGoogle Scholar
  42. 42.
    Di Paola, M., Heuer, R., Pirrotta, A.: Fractional visco-elastic Euler–Bernoulli beam. Int. J. Solids Struct. 50, 3505–3510 (2013)Google Scholar
  43. 43.
    Rand, R.H., Sah, S.M., Suchorsky, M.K.: Fractional Mathieu equation. Commun. Nonlinear Sci. Numer. Simul. 15, 3254–3262 (2010)Google Scholar
  44. 44.
    Nayfeh, A.H.: Nonlinear Interactions. Wiley, New York (2000)MATHGoogle Scholar
  45. 45.
    Shao, S., Masri, K.M., Younis, M.I.: The effect of timedelayed feedback controller on an electrically actuated resonator. Nonlinear Dyn. 74, 257–270 (2013)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Han, J., Zhang, Q., Wang, W.: Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes. Commun. Nonlinear Sci Numer. Simul. 22, 492–510 (2015)CrossRefGoogle Scholar
  47. 47.
    Siewe, M.S., Hegazy, U.H.: Homoclinic bifurcation and chaos control in MEMS resonators. Appl. Math. Model. 35, 5533–5552 (2011)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6, 125–42 (1994)CrossRefGoogle Scholar
  49. 49.
    Cao, H., Chi, X., Chen, G.: Suppressing or inducing chaos in a model of robot arms and mechanical manipulators. J. Sound Vib. 271, 705–724 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Nonlinear Dynamics and ControlTianjinChina

Personalised recommendations