Nonlinear Dynamics

, Volume 87, Issue 1, pp 291–302 | Cite as

Adaptive fuzzy tracking control design for permanent magnet synchronous motors with output constraint

  • Wanmin Chang
  • Shaocheng Tong
Original Paper


In this paper, an adaptive fuzzy output feedback position tracking constraint control method is proposed for permanent magnet synchronous motors (PMSM) system. Fuzzy logic systems are used to approximate unknown nonlinearities. For the cases of the immeasurable states, a state observer is proposed to solve the immeasurable states problem. In the unified framework of adaptive backstepping control design and utilizing the barrier Lyapunov function method, an observer-based adaptive fuzzy output feedback tracking constraint control scheme is developed. The simulation results are given to illustrate the effectiveness of the proposed control method for the PMSM.


Permanent magnet synchronous motors (PMSM) system Fuzzy logic system Adaptive fuzzy control Backstepping design Barrier Lyapunov function (BLF) 


  1. 1.
    Blaschke, F.: The principle of field orientation applied to the new transvector closed-loop control system for rotating field machines. Power Electron. 2(2), 26–28 (2004)MathSciNetGoogle Scholar
  2. 2.
    Depenbrock, M.: Direct self-controlled (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420–429 (1988)CrossRefGoogle Scholar
  3. 3.
    Marino, R., Peresada, S., Valigi, P.: Adaptive input-output linearizing control of induction motors. IEEE Trans. Autom. Control 38(2), 208–221 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Utkin, V.I.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 40(1), 23–36 (1993)CrossRefGoogle Scholar
  5. 5.
    Ren, H., Liu, D.: Nonlinear feedback control of chaos in permanent magnet synchronous motor. IEEE Trans. Circ. Syst. 53(1), 45–50 (2006)CrossRefGoogle Scholar
  6. 6.
    Li, T.S., Wang, D., Chen, N.X.: Adaptive fuzzy control of uncertain MIMO non-linear systems in block-triangular forms. Nonlinear Dyn. 63(1–2), 105–123 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Wang, H.Q., Liu, X.P., Chen, B., Zhou, Q.: Adaptive fuzzy decentralized control for a class of pure-feedback large-scale nonlinear systems. Nonlinear Dyn. 75(3), 449–460 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Wang, F., Liu, Z., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead zone and dynamic uncertainties. Nonlinear Dyn. 81(3), 1289–1300 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Wu, J., Li, J.: Adaptive fuzzy control for perturbed strict-feedback nonlinear systems with predefined tracking accuracy. Nonlinear Dyn. 83(3), 1185–1197 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cheng, J., Park, J.H., Liu, Y.J., Liu, Z.J., Tang, L.M.: Finite-time \({\cal H}_\infty \) fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions. Fuzzy Sets Syst. doi: 10.1016/j.fss.2016.06.007
  11. 11.
    Yu, J.P., Chen, B., Yu, H.S.: Fuzzy-approximation-based adaptive control of the chaotic permanent magnet synchronous motor. Nonlinear Dyn. 69(3), 1479–1488 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yu, J.P., Chen, B., Yu, H.S.: Direct adaptive neural control of chaos in the permanent magnet synchronous motor. Nonlinear Dyn. 70(3), 1879–1887 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, D., Cai, W.J., Xie, L.H., Wang, Q.G.: Nonfragile distributed filtering for T-S fuzzy systems in sensor networks. IEEE Trans. Fuzzy Syst. (2014). doi: 10.1109/TFUZZ.2367101
  14. 14.
    Bu, F., Yao, B.: Observer based coordinated adaptive robust control of robot manipulators driven by single-rod hydraulic actuators. IEEE Int. Conf. Robot. Autom. 3, 3034–3039 (2000)Google Scholar
  15. 15.
    Nakkarat, P., Kuntanapreeda, S.: Observer-based backstepping force control of an electro hydraulic actuator. Control Eng. Pract. 17(8), 895–902 (2009)CrossRefGoogle Scholar
  16. 16.
    Han, S.I., Lee, J.M.: Adaptive fuzzy backstepping dynamic surface control for output-constrained non-smooth nonlinear dynamic system. Int. J. Control Autom. Syst. 10(4), 684–696 (2012)CrossRefGoogle Scholar
  17. 17.
    Niu, B., Zhao, J.: Tracking control for output constrained nonlinear switched systems with a barrier Lyapunov function. Int. J. Syst. Sci. 44(5), 978–985 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Li, Y.M., Tong, S.C., Li, T.S.: Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst. 248, 138–155 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Shen, H., Park, J.H., Wu, Z.G.: Finite-time reliable \({{\cal L}_2 \text{- }{\cal L}_\infty }/{{\cal H}_\infty }\) control for Takagi-Sugeno fuzzy systems with actuator faults. IET Control Theory Appl. 8(9), 688–696 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cheng, J., Zhu, H., Zhong, S.M., Zeng, Y., Dong, X.C.: Finite-time \(H_\infty \) control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. ISA Trans. 52, 768–774 (2013)CrossRefGoogle Scholar
  21. 21.
    Li, Y.M., Tong, S.C.: Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inf. Sci. 292, 125–142 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pillay, P., Krishnan, R.: Modeling of permanent magnet motor drives. IEEE Trans. Ind. Electron. 35(4), 537–541 (1988)Google Scholar
  23. 23.
    Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1994)Google Scholar
  24. 24.
    Shen, H., Zhu, Y.Z., Zhang, L.X., Park, J.H.: Extended dissipative state estimation for markov jump neural networks with unreliable links. IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2511196
  25. 25.
    Li, Y.X., Yang, G.H.: Robust fuzzy adaptive fault-tolerant control for a class of nonlinear systems with mismatched uncertainties and actuator faults. Nonlinear Dyn. 81(1–2), 395–409 (2015)CrossRefMATHGoogle Scholar
  26. 26.
    Li, T.S., Li, R.H., Li, J.F.: Decentralized adaptive neural control of nonlinear systems with unknown time delays. Nonlinear Dyn. 67(3), 2017–2026 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Cheng, J., Chen, S.Q., Liu, Z.J., Wang, H.L., Li, J.: Robust finite-time sampled-data control of linear systems subject to random occurring delays and its application to Four-Tank system. Appl. Math. Comput. 281, 55–76 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of Electrical EngineeringLiaoning University of TechnologyJinzhouPeople’s Republic of China

Personalised recommendations