Nonlinear Dynamics

, Volume 87, Issue 1, pp 207–218 | Cite as

Practical bipartite synchronization via pinning control on a network of nonlinear agents with antagonistic interactions

Original Paper


This paper studies the synchronization phenomena in a network of heterogeneous nonlinear systems over signed graph, which can be considered as the perturbation of a network of homogeneous nonlinear systems. Assume that the signed graph is structurally balanced, the nonlinear system satisfies one-sided Lipschitz condition, and a leader pins a subset of agents. Under some proper initial conditions of the leader, we derive some conditions under which bipartite synchronization error can be kept arbitrary small by choosing a proper pining scheme. This property is called practical pinning bipartite synchronization as an alternative synchronization notion for network of heterogeneous nonlinear systems over signed graph. Finally, we present a numerical example to illustrate the effectiveness of the obtained results.


Bipartite synchronization Heterogeneous nonlinear systems Pinning control 


  1. 1.
    Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Strogatz, S.H., Stewart, I., et al.: Coupled oscillators and biological synchronization. Sci. Am. 269(6), 102–109 (1993)CrossRefGoogle Scholar
  3. 3.
    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)CrossRefGoogle Scholar
  4. 4.
    Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29(01), 1450239 (2015)CrossRefGoogle Scholar
  5. 5.
    Qin, H., Ma, J., Wang, C., Chu, R.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China Phys. Mech. Astron. 57(10), 1918–1926 (2014)CrossRefGoogle Scholar
  6. 6.
    Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20(1), 64–73 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Altafini, C.: Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control 58(4), 935–946 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hu, J., Zheng, W.X.: Bipartite consensus for multi-agent systems on directed signed networks. In: 2013 IEEE 52nd Annual Conference on IEEE Decision and Control (CDC), pp. 3451–3456 (2013)Google Scholar
  9. 9.
    Valcher, M.E., Misra, P.: On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions. Syst. Control Lett. 66, 94–103 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhang, H., Chen, J.: Bipartite consensus of general linear multi-agent systems. In: American Control Conference (ACC), pp. 808–812. IEEE (2014)Google Scholar
  11. 11.
    Zhang, H., Chen, J.: Bipartite consensus of linear multi-agent systems over signed digraphs: an output feedback control approach. In: Proceedings on 19th IFAC World Congress, pp. 4681–4686 (2014)Google Scholar
  12. 12.
    Fan, M.-C., Zhang, H.-T., Wang, M.: Bipartite flocking for multi-agent systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3313–3322 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hu, J., Zheng, W.X.: Emergent collective behaviors on coopetition networks. Phys. Lett. A 378(26), 1787–1796 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Wasserman, S.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  15. 15.
    Altafini, C.: Dynamics of opinion forming in structurally balanced social networks. PloS ONE 7(6), e38135 (2012)CrossRefGoogle Scholar
  16. 16.
    Lee, S.-H.: Predator’s attack-induced phase-like transition in prey flock. Phys. Lett. A 357(4), 270–274 (2006)CrossRefGoogle Scholar
  17. 17.
    Grossberg, S.: Competition, decision, and consensus. J. Math. Anal. Appl. 66(2), 470–493 (1978)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Grossberg, S.: Biological competition: Decision rules, pattern formation, and oscillations. In: Proceedings of the National Academy of Sciences of the United States of America, pp. 2338–2342 (1980)Google Scholar
  19. 19.
    Chen, C.C., Wan, Y.-H., Chung, M.-C., Sun, Y.-C.: An effective recommendation method for cold start new users using trust and distrust networks. Inf. Sci. 224, 19–36 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Victor, P., Cornelis, C., Cock, M., Teredesai, A.: Trust-and distrust-based recommendations for controversial reviews. IEEE Intell. Syst. 26(1), 48–55 (2011)CrossRefGoogle Scholar
  21. 21.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ren, W., Beard, R.W., et al.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhai, S., Yang, X.-S.: Consensus of second-order multi-agent systems with nonlinear dynamics and switching topology. Nonlinear Dyn. 77(4), 1667–1675 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhai, S., Yang, X.S.: Contraction analysis of synchronization of complex switched networks with different inner coupling matrices. J. Franklin Inst. 350(10), 3116–3127 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Feng, Y., Xu, S., Lewis, F.L., Zhang, B.: Consensus of heterogeneous first-and second-order multi-agent systems with directed communication topologies. Int. J. Robust Nonlinear Control 25(3), 362–375 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Chen, Y., Sun, J.: Distributed optimal control for multi-agent systems with obstacle avoidance. Neurocomputing 173(3), 2014–2021 (2016)CrossRefGoogle Scholar
  27. 27.
    Wan, X., Sun, J.: Adaptiveimpulsive synchronization of chaotic systems. Math. Comput. Simul. 81(8), 1609–1617 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zhai, S., Li, Q.: Pinning bipartite synchronization for coupled nonlinear systems with antagonistic interactions and switching topologies. Syst. Control Lett. 94, 127–132 (2016)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)CrossRefGoogle Scholar
  30. 30.
    Yu, W., Cao, J., Chen, G.: Stability and hopf bifurcation of a general delayed recurrent neural network. IEEE Trans. Neural Netw. 19(5), 845–854 (2008)CrossRefGoogle Scholar
  31. 31.
    Montenbruck, J.M., Bürger, M., Allgöwer, F.: Practical synchronization with diffusive couplings. Automatica 53, 235–243 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chen, T., Liu, X., Lu, W.: Pinning complex networks by a single controller. IEEE Trans. Circuits Syst. I Regul. Pap. 54(6), 1317–1326 (2007)Google Scholar
  33. 33.
    Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)MATHGoogle Scholar
  34. 34.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Research Center of Analysis and Control for Complex Systems, Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of EducationChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations