Skip to main content
Log in

Modeling of a light pulse in bi-isotropic optical fiber with Kerr effect: case of Tellegen media

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modeling of a light pulse propagating in optical fiber where the core is bi-isotropic non-reciprocal achiral media (i.e., Tellegen media) with Kerr effect is studied. The two constitutive equations approach for nonlinear bi-isotropic media are proposed to highlight nonlinear effect, which is due to the magnetization vector under the influence of a strong electric field. According to this approach, nonlinear parameter of magnetization vector is illustrated; it is the important factors to estimate bi-isotropic optical fiber dispersion and nonlinearity. Split-step Fourier method is used to simulate and solve the nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao, X.-Y.: Variety of the cosmic plasmas: general variable-coefficient Korteweg–de Vries–Burgers equation with experimental/observational support. Europhys. Lett. 110, 15002 (2015)

    Article  Google Scholar 

  2. Zhen, H.-L., Tian, B., Wang, Y.-F.: Soliton solution and chaotic motions of the Zakharov equation for the Langmuir wave in the plasma. Phys. Plasmas 22, 1–9 (2015)

    MathSciNet  Google Scholar 

  3. Sun, W.-R., Tian, B., Jiang, Y.: Optical rogue waves associated with the negative coherent coupling in an isotropic medium. Phys. Rev. E 91, 023205 (2015)

    Article  Google Scholar 

  4. Wang, Y.-F., Tian, B., Wang, M.: Solitons via an auxiliary function for an inhomogeneous higher-order nonlinear Schrödinger equation in optical fiber communications. Nonlinear Dyn. 79, 721–729 (2015)

    Article  MathSciNet  Google Scholar 

  5. Gao, X.-Y.: Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics. Ocean Eng. 96, 245–247 (2015)

    Article  Google Scholar 

  6. Gao, X.-Y.: Incompressible-fluid symbolic computation and bäcklund transformation: (3 + 1)-dimensional variable-coefficient boiti-leon-manna-pempinelli model. Z. Naturforsch. A. 70, 59–61 (2015)

    Google Scholar 

  7. Masemola, P., Kara, A.H., Biswas, A.: Optical solitons and conservation laws for driven nonlinear Schrödinger’s equation with linear attenuation and detuning. Opt. Laser Technol. 45, 402–405 (2013)

    Article  Google Scholar 

  8. Biswas, A.: Dispersion-managed solitons in optical fibres. J. Opt. A 4, 84–97 (2002)

    Article  Google Scholar 

  9. Savescu, M., Khan, K.R., Naruka, P., Jafari, H., Moraru, L., Biswas, A.: Optical solitons in photonic nano waveguides with an improved nonlinear Schrödinger’s equation. J. Comput. Theor. Nanosci. 10, 1182–1191 (2013)

    Article  Google Scholar 

  10. Savescu, M., Khan, K.R., Kohl, R.W., Moraru, L., Yildirim, A., Biswas, A.: Optical soliton perturbation with improved nonlinear Schrödinger’s equation in nano fibers. J. Nanoelectron. Optoelectron. 8, 208–220 (2013)

    Article  Google Scholar 

  11. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Savescu, M., Milovic, D., Khan, K.R., Biswas, A.: Optical solitons in birefringent fibers with spatio-temporal dispersion. Optik Int. J. Light Electron Opt. 125, 4935–4944 (2014)

    Article  Google Scholar 

  12. Savescu, M., Johnson, S., Kara, A.H., Crutcher, S.H., Kohl, R., Biswas, A.: Conservation laws for optical solitons with spatio-temporal dispersion. J. Electromagn. Waves Appl. 28, 242–252 (2014)

    Article  Google Scholar 

  13. Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 441–458 (2014)

    Article  MathSciNet  Google Scholar 

  14. Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Belic, M.: Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61, 1550–1555 (2014)

    Article  Google Scholar 

  15. Biswas, A., Aceves, A.B.: Dynamics of solitons in optical fibres. J. Mod. Opt. 48, 1135–1150 (2001)

    Article  Google Scholar 

  16. Mirzazadeh, M., Eslami, Mostafa, Savescu, Michelle, Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, Anjan: Optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24(01), 1550006 (2015)

    Article  Google Scholar 

  17. Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Belic, M.Singular: solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61, 1550–1555 (2014)

    Article  Google Scholar 

  18. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1–2), 277–282 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mirzazadeh, M., Zhou, Q., Bhrawy, A.H., Biswas, A., Belic, M.: Optical solitons in cascaded system with three integration schemes. J. Optoelectron. Adv. Mater. 17(1–2), 74–81 (2015)

    Google Scholar 

  20. Eslami, M., Mirzazadeh, M., Vajargah, B.F., Biswas, A.: Optical solitons for the resonant nonlinear Schrödinger’s equation with time-dependent coefficients by the first integral method. Optik Int. J. Light Electron Opt. 125(13), 3107–3116 (2014)

    Article  Google Scholar 

  21. Mirzazadeh, M., Biswas, A.: Optical solitons with spatio-temporal dispersion by first integral approach and functional variable method. Optik Int. J. Light Electron Opt. 125(19), 5467–5475 (2014)

    Article  Google Scholar 

  22. Mirzazadeh, M., Zhou, Q., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Bifurcation analysis and bright soliton of generalized resonant dispersive nonlinear Schrodinger’s equation. Optoelectron. Adv. Mater. 9(11–12), 1342–1346 (2015)

    Google Scholar 

  23. Mirzazadeh, M., Mahmood, M.F., Majid, F.B., Biswas, A., Belic, M.: Optical solitons in birefringent fibers with Riccati equation method. Optoelectron. Adv. Mater. 7–8, 1032–1036 (2015)

    Google Scholar 

  24. Mirzazadeh, M., Zhou, Q., Biswas, A., Belic, M.: Optical solitons of generalized resonant dispersive nonlinear Schrodinger’s equation with power law nonlinearity. Optoelectron. Adv. Mater. 9(9–10), 1100–1103 (2015)

    Google Scholar 

  25. Zhou, Q., Liu, L., Zhang, H., Mirzazadeh, M., Bhrawy, A., Zerrad, E., Biswas, A.: Dark and singular optical solitons with competing nonlocal nonlinearities. Opt. Appl. 46(1), 79–86 (2016)

  26. Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. Optik Int. J. Light Electron Opt. 127(18), 7250–7257 (2016)

    Article  Google Scholar 

  27. Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, A.: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Waves Random Complex Media 26(2), 204–210 (2016)

    Article  MathSciNet  Google Scholar 

  28. Abdelkawy, M.A., Bhrawy, A.H., Zerrad, E., Biswas, A.: Application of tanh method to complex coupled nonlinear evolution equations. Acta Phys. Pol. A 129(3), 278–283 (2016)

    Article  Google Scholar 

  29. Kumar, S., Zhou, Q., Bhrawy, A., Zerrad, E., Biswas, A., Belic, M.: Optical solitons in birefringent fibers by lie symmetry analysis. Romanian Rep. Phys. 68(1), 341–352 (2016)

    Google Scholar 

  30. Mezache, Z., Benabdelaziz, F.: Study of chiroptical fiber nonlinearities with new formulation of constitutive equations. J. Electromagn. Waves Appl. 29, 2257–2268 (2015)

    Article  Google Scholar 

  31. Mezache, Z., Benabdelaziz, F.: Rigorous approach of the constitutive relations for nonlinear chiral media. Prog. Electromagn. Res. Lett. 52, 57–62 (2015)

    Article  Google Scholar 

  32. Sihvola, A.H., Lindell, I.V.: BI-isotropic constitutive relations. Microw. Opt. Technol. Lett. 4, 295–297 (1991)

    Article  Google Scholar 

  33. Zamorano, M., Torres-Silva, H.: Schrödinger equation for a fiber chiral. J. Mex. Phys. 46, 62–66 (2000)

    MATH  Google Scholar 

  34. Torres-Silva, H., Lucero, M.Z.: Non-linear polarization and chiral effects in birefringent solitons. Pramana 62, 37–52 (2004)

    Article  Google Scholar 

  35. Siddamal, S.V., Banakar, R.M., Jinaga, B.C.: Split step method in the analysis and modeling of optical fiber communication system. In: Advances in Computing, Communication and Control, pp. 254–261. Springer, Berlin (2011)

  36. Agrawal, G.: Non linear fiber optics. Academic Press, Millbrae (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zinelabiddine Mezache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezache, Z., Aib, S., Benabdelaziz, F. et al. Modeling of a light pulse in bi-isotropic optical fiber with Kerr effect: case of Tellegen media. Nonlinear Dyn 86, 789–794 (2016). https://doi.org/10.1007/s11071-016-2923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2923-x

Keywords

Navigation