Advertisement

Nonlinear Dynamics

, Volume 86, Issue 1, pp 605–622 | Cite as

Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network

  • Zhaoxia Peng
  • Guoguang Wen
  • Shichun Yang
  • Ahmed Rahmani
Original Paper

Abstract

This paper investigates the distributed formation control problem for multiple nonholonomic wheeled mobile robots. A variable transformation is first proposed to convert the formation control problem into a state consensus problem. Then, when the dynamics of the mobile robots are considered, the distributed kinematic controllers and neural network torque controllers are derived for each robot such that a group of nonholonomic mobile robots asymptotically converge to a desired geometric pattern along the specified reference trajectory. The specified reference trajectory is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers. Also the followers are assumed to have only local interaction. Moreover, the neural network torque controllers proposed in this work can tackle the dynamics of robots with unmodeled bounded disturbances and unstructured unmodeled dynamics. Some sufficient conditions are derived for accomplish the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov control approach. Finally, simulation examples illustrate the effectiveness of the proposed controllers.

Keywords

Formation control Nonholonomic wheeled robots Neural network Graph theory Filippov solution 

Notes

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (Nos. YWF-14-RSC-032, YWF-15-SYS-JTXY-007, YWF-16-BJ-Y-21), by the Laboratoire international associé, and by the National Natural Science Foundation of China under Grants 61403019, 61503016.

References

  1. 1.
    Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Rob. Autom. 18(5), 813–825 (2002)CrossRefGoogle Scholar
  2. 2.
    Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Rob. Autom. 17(6), 905–908 (2001). doi: 10.1109/70.976023 CrossRefGoogle Scholar
  3. 3.
    Balch, T., Arkin, R.C.: Behavior-based formation control for multi-robot teams. IEEE Trans. Rob. Autom. 14(6), 1–15 (1998)CrossRefGoogle Scholar
  4. 4.
    Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Trans. Rob. Autom. 17(6), 947–951 (2001). doi: 10.1109/70.976029 CrossRefGoogle Scholar
  5. 5.
    Lewis, M.A., Tan, K.: High precision formation control of mobile robots using virtual structures. Auton. Rob. 4(4), 387–403 (1997)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Sun, D., Yang, J., Chen, H.: Leader–follower formation control of multiple nonholonomic mobile robots incorporating a receding-horizon scheme. Int. J. Rob. Res. 29(6), 727–747 (2010). doi: 10.1177/0278364909104290 CrossRefGoogle Scholar
  7. 7.
    Dong, W.: Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory. IEEE Trans. Rob. 28(1), 262–268 (2012). doi: 10.1109/TRO.2011.2166436 CrossRefGoogle Scholar
  8. 8.
    Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory. Int. J. Syst. Sci. 46(8), 1447–1457 (2015). doi: 10.1080/00207721.2013.822609 MathSciNetMATHGoogle Scholar
  9. 9.
    Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998). doi: 10.1109/72.701173 CrossRefGoogle Scholar
  10. 10.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Rob. Autom. 16(5), 609–615 (2000)CrossRefGoogle Scholar
  11. 11.
    Dong, W.: Robust formation control of multiple wheeled mobile robots. J. Intell. Rob. Syst. 62(3–4), 547–565 (2011)MATHCrossRefGoogle Scholar
  12. 12.
    Peng, Z., Yang, S., Wen, G., Rahmani, A.: Distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partial known dynamics. Math. Probl. Eng. 2014, 1–11 (2014). doi: 10.1155/2014/670497 MathSciNetGoogle Scholar
  13. 13.
    Liu, J., Ji, J., Zhou, J., Xiang, L., Zhao, L.: Adaptive group consensus in uncertain networked Euler–Lagrange systems under directed topology. Nonlinear Dyn. 82(3), 1145–1157 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kwan, C., Lewis, F., Dawson, D.: Robust neural-network control of rigid-link electrically driven robots. IEEE Trans. Neural Netw. 9(4), 581–588 (1998). doi: 10.1109/72.701172 CrossRefGoogle Scholar
  15. 15.
    Wang, X., Liu, Z., Cai, Y.: Adaptive single neural network control for a class of uncertain discrete-time nonlinear strict-feedback systems with input saturation. Nonlinear Dyn. 82(4), 2021–2030 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader–follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008). doi: 10.1016/j.automatica.2007.09.019 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader–follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Rob. Auton. Syst. 61(9), 988–996 (2013)CrossRefGoogle Scholar
  18. 18.
    Dierks, T., Jagannathan, S.: Neural network control of mobile robot formations using RISE feedback. IEEE Trans. Syst. Man Cybern. B Cybern. 39(2), 332–347 (2009). doi: 10.1109/TSMCB.2008.2005122 MATHCrossRefGoogle Scholar
  19. 19.
    Dong, W., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica 45(3), 706–710 (2009). doi: 10.1016/j.automatica.2008.09.015 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Dong, W.: Flocking of multiple mobile robots based on backstepping. IEEE Trans. Syst. Man Cybern. B Cybern. 41(2), 414–424 (2011). doi: 10.1109/TSMCB.2010.2056917 CrossRefGoogle Scholar
  21. 21.
    Zhao, L., Ji, J., Liu, J., Wu, Q., Zhou, J.: Tracking task-space synchronization of networked Lagrangian systems with switching topology. Nonlinear Dyn. 83(3), 1673–1685 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, X., Su, H., M.C.: Flocking of networked Euler–Lagrange systems with uncertain parameters and time-delays under directed graphs. Nonlinear Dyn. (2016)Google Scholar
  23. 23.
    Peng, Z., Yang, S., Wen, G., Rahmani, A., Yu, Y.: Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots. Neurocomputing 173(3), 1485–1494 (2016). doi: 10.1016/j.neucom.2015.09.022. http://www.sciencedirect.com/science/article/pii/S0925231215013302
  24. 24.
    Meyer, C.D. (ed.): Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  25. 25.
    Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators, vol. 92. MacMillan, New York (1993)Google Scholar
  26. 26.
    Chung, F.R.K.: Spectral Graph Theory, vol. 92. American Mathematical Society, Providence, RI (1997)Google Scholar
  27. 27.
    Cortes, J.: Discontinuous dynamical systems. IEEE Control Syst. 28(3), 36–73 (2008). doi: 10.1109/MCS.2008.919306 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ji, M., Egerstedt, M.: Connectedness preserving distributed coordination control over dynamic graphs. In: Proceedings of the 2005 American Control Conference, pp. 93–98 (2005). doi: 10.1109/ACC.2005.1469914
  29. 29.
    Paden, B.E., Sastry, S.S.: A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Trans. Circuits Syst. 34(1), 73–82 (1987). doi: 10.1109/TCS.1987.1086038 MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Autom. Control 39(5), 1910–1914 (1994)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Dong, W., Farrell, J.: Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Autom. Control 53(6), 1434–1448 (2008). doi: 10.1109/TAC.2008.925852
  32. 32.
    Kwan, C., Dawson, D., Lewis, F.: Robust adaptive control of robots using neural network: global tracking stability. In: Proceedings of the 34th IEEE Conference on Decision and Control, vol. 2, pp. 1846 –1851 (1995). doi: 10.1109/CDC.1995.480610
  33. 33.
    Park, B.S., Park, J.B., Choi, Y.H.: Adaptive formation control of electrically driven nonholonomic mobile robots with limited information. IEEE Trans. Syst. Man Cybern. B Cybern. 41(4), 1061–1075 (2011). doi: 10.1109/TSMCB.2011.2105475 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wen, G., Peng, Z., Rahmani, A., Yu, Y.: Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics. Int. J. Syst. Sci. 45(9), 1892–1901 (2014). doi: 10.1080/00207721.2012.757386 MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern. B Cybern. 40(2), 383–399 (2010). doi: 10.1109/TSMCB.2009.2025508 CrossRefGoogle Scholar
  36. 36.
    Lewis, F.L., Dawson, D., Abdallah, C. (eds.): Robot Manipulator Control: Theory and Practice, 2nd edn. CRC Press, Boca Raton (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Transportation Science and EngineeringBeihang UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Engineering Center for Clean Energy and High Efficient PowerBeihang UniversityBeijingPeople’s Republic of China
  3. 3.Department of MathematicsBeijing Jiaotong UniversityBeijingPeople’s Republic of China
  4. 4.CRIStAL, UMR CNRS 9189Ecole Centrale de LilleVilleneuve d’AscqFrance

Personalised recommendations