Skip to main content
Log in

Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the distributed formation control problem for multiple nonholonomic wheeled mobile robots. A variable transformation is first proposed to convert the formation control problem into a state consensus problem. Then, when the dynamics of the mobile robots are considered, the distributed kinematic controllers and neural network torque controllers are derived for each robot such that a group of nonholonomic mobile robots asymptotically converge to a desired geometric pattern along the specified reference trajectory. The specified reference trajectory is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers. Also the followers are assumed to have only local interaction. Moreover, the neural network torque controllers proposed in this work can tackle the dynamics of robots with unmodeled bounded disturbances and unstructured unmodeled dynamics. Some sufficient conditions are derived for accomplish the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov control approach. Finally, simulation examples illustrate the effectiveness of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Rob. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  2. Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Rob. Autom. 17(6), 905–908 (2001). doi:10.1109/70.976023

    Article  Google Scholar 

  3. Balch, T., Arkin, R.C.: Behavior-based formation control for multi-robot teams. IEEE Trans. Rob. Autom. 14(6), 1–15 (1998)

    Article  Google Scholar 

  4. Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Trans. Rob. Autom. 17(6), 947–951 (2001). doi:10.1109/70.976029

    Article  Google Scholar 

  5. Lewis, M.A., Tan, K.: High precision formation control of mobile robots using virtual structures. Auton. Rob. 4(4), 387–403 (1997)

    Article  Google Scholar 

  6. Chen, J., Sun, D., Yang, J., Chen, H.: Leader–follower formation control of multiple nonholonomic mobile robots incorporating a receding-horizon scheme. Int. J. Rob. Res. 29(6), 727–747 (2010). doi:10.1177/0278364909104290

    Article  Google Scholar 

  7. Dong, W.: Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory. IEEE Trans. Rob. 28(1), 262–268 (2012). doi:10.1109/TRO.2011.2166436

    Article  Google Scholar 

  8. Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory. Int. J. Syst. Sci. 46(8), 1447–1457 (2015). doi:10.1080/00207721.2013.822609

    MathSciNet  MATH  Google Scholar 

  9. Fierro, R., Lewis, F.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998). doi:10.1109/72.701173

    Article  Google Scholar 

  10. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Rob. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  11. Dong, W.: Robust formation control of multiple wheeled mobile robots. J. Intell. Rob. Syst. 62(3–4), 547–565 (2011)

    Article  MATH  Google Scholar 

  12. Peng, Z., Yang, S., Wen, G., Rahmani, A.: Distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partial known dynamics. Math. Probl. Eng. 2014, 1–11 (2014). doi:10.1155/2014/670497

    MathSciNet  Google Scholar 

  13. Liu, J., Ji, J., Zhou, J., Xiang, L., Zhao, L.: Adaptive group consensus in uncertain networked Euler–Lagrange systems under directed topology. Nonlinear Dyn. 82(3), 1145–1157 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kwan, C., Lewis, F., Dawson, D.: Robust neural-network control of rigid-link electrically driven robots. IEEE Trans. Neural Netw. 9(4), 581–588 (1998). doi:10.1109/72.701172

    Article  Google Scholar 

  15. Wang, X., Liu, Z., Cai, Y.: Adaptive single neural network control for a class of uncertain discrete-time nonlinear strict-feedback systems with input saturation. Nonlinear Dyn. 82(4), 2021–2030 (2015)

    Article  MathSciNet  Google Scholar 

  16. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader–follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008). doi:10.1016/j.automatica.2007.09.019

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, Z., Wen, G., Rahmani, A., Yu, Y.: Leader–follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Rob. Auton. Syst. 61(9), 988–996 (2013)

    Article  Google Scholar 

  18. Dierks, T., Jagannathan, S.: Neural network control of mobile robot formations using RISE feedback. IEEE Trans. Syst. Man Cybern. B Cybern. 39(2), 332–347 (2009). doi:10.1109/TSMCB.2008.2005122

    Article  MATH  Google Scholar 

  19. Dong, W., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica 45(3), 706–710 (2009). doi:10.1016/j.automatica.2008.09.015

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, W.: Flocking of multiple mobile robots based on backstepping. IEEE Trans. Syst. Man Cybern. B Cybern. 41(2), 414–424 (2011). doi:10.1109/TSMCB.2010.2056917

    Article  Google Scholar 

  21. Zhao, L., Ji, J., Liu, J., Wu, Q., Zhou, J.: Tracking task-space synchronization of networked Lagrangian systems with switching topology. Nonlinear Dyn. 83(3), 1673–1685 (2016)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Su, H., M.C.: Flocking of networked Euler–Lagrange systems with uncertain parameters and time-delays under directed graphs. Nonlinear Dyn. (2016)

  23. Peng, Z., Yang, S., Wen, G., Rahmani, A., Yu, Y.: Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots. Neurocomputing 173(3), 1485–1494 (2016). doi:10.1016/j.neucom.2015.09.022. http://www.sciencedirect.com/science/article/pii/S0925231215013302

  24. Meyer, C.D. (ed.): Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Google Scholar 

  25. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators, vol. 92. MacMillan, New York (1993)

    Google Scholar 

  26. Chung, F.R.K.: Spectral Graph Theory, vol. 92. American Mathematical Society, Providence, RI (1997)

  27. Cortes, J.: Discontinuous dynamical systems. IEEE Control Syst. 28(3), 36–73 (2008). doi:10.1109/MCS.2008.919306

    Article  MathSciNet  Google Scholar 

  28. Ji, M., Egerstedt, M.: Connectedness preserving distributed coordination control over dynamic graphs. In: Proceedings of the 2005 American Control Conference, pp. 93–98 (2005). doi:10.1109/ACC.2005.1469914

  29. Paden, B.E., Sastry, S.S.: A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Trans. Circuits Syst. 34(1), 73–82 (1987). doi:10.1109/TCS.1987.1086038

    Article  MathSciNet  MATH  Google Scholar 

  30. Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Autom. Control 39(5), 1910–1914 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dong, W., Farrell, J.: Cooperative control of multiple nonholonomic mobile agents. IEEE Trans. Autom. Control 53(6), 1434–1448 (2008). doi:10.1109/TAC.2008.925852

  32. Kwan, C., Dawson, D., Lewis, F.: Robust adaptive control of robots using neural network: global tracking stability. In: Proceedings of the 34th IEEE Conference on Decision and Control, vol. 2, pp. 1846 –1851 (1995). doi:10.1109/CDC.1995.480610

  33. Park, B.S., Park, J.B., Choi, Y.H.: Adaptive formation control of electrically driven nonholonomic mobile robots with limited information. IEEE Trans. Syst. Man Cybern. B Cybern. 41(4), 1061–1075 (2011). doi:10.1109/TSMCB.2011.2105475

    Article  MathSciNet  Google Scholar 

  34. Wen, G., Peng, Z., Rahmani, A., Yu, Y.: Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics. Int. J. Syst. Sci. 45(9), 1892–1901 (2014). doi:10.1080/00207721.2012.757386

    Article  MathSciNet  MATH  Google Scholar 

  35. Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern. B Cybern. 40(2), 383–399 (2010). doi:10.1109/TSMCB.2009.2025508

    Article  Google Scholar 

  36. Lewis, F.L., Dawson, D., Abdallah, C. (eds.): Robot Manipulator Control: Theory and Practice, 2nd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (Nos. YWF-14-RSC-032, YWF-15-SYS-JTXY-007, YWF-16-BJ-Y-21), by the Laboratoire international associé, and by the National Natural Science Foundation of China under Grants 61403019, 61503016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxia Peng or Guoguang Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Wen, G., Yang, S. et al. Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network. Nonlinear Dyn 86, 605–622 (2016). https://doi.org/10.1007/s11071-016-2910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2910-2

Keywords

Navigation