Nonlinear Dynamics

, Volume 86, Issue 1, pp 501–512 | Cite as

Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper

  • Nilson Barbieri
  • Renato Barbieri
  • Rodrigo Aparecido da Silva
  • Marcos José Mannala
  • Lucas de Sant’Anna Vitor Barbieri
Original Paper


The Bouc–Wen model was used to investigate nonlinear dynamical behavior of a wire-rope isolator and an asymmetric Stockbridge damper. The experimental vibration signals were acquired through accelerometers placed along the sample. The wire-rope isolator system was excited using and electromechanical shaker with constant values of acceleration, and the Stockbridge damper was excited using a cam machine with different profiles. The numeric and experimental data were approximated using particle swarm optimization method. The agreement between numerical and experimental data show that the model of Bouc–Wen is well suited for dynamic analysis of such systems.


Wire-rope isolator Stockbridge damper Vibration Bouc–Wen model 


  1. 1.
    Balaji, P.S., Moussa, L., Rahman, M.E., Vuia, L.T.: Experimental investigation on the hysteresis behavior of the wire rope isolators. J. Mech. Sci. Technol. 29(4), 1527–1536 (2015)CrossRefGoogle Scholar
  2. 2.
    Balaji, P.S., Rahman, M.E., Moussa, L., Lau, H.H.: Wire rope isolators for vibration isolation of equipment and structures—a review. IOP conference series. Materials Science and Engineering 78, 1–10 (2015)Google Scholar
  3. 3.
    Barbieri, N., Barbieri, R.: Dynamic analysis of Stockbridge damper. Adv. Acoust. Vib. 2012, 1–8 (2012)CrossRefMATHGoogle Scholar
  4. 4.
    Barry, O., Zu, J.W., Oguamanam, D.C.D.: Nonlinear dynamics of Stockbridge dampers. J. Dyn. Syst. Meas. Control 137(6), 1–7 (2015)CrossRefGoogle Scholar
  5. 5.
    Bouc, R.: Forced vibration of mechanical systems with histeresis. In: Proceedings of the Fourth Conference on Non-linear Oscillation, Prague, Czechoslovakia (1967)Google Scholar
  6. 6.
    Carboni, B., Lacarbonara, W., Aurichio, F.: Hysteresis of multiconfiguration assemblies of nitinol and steel strands: experiments and phenomenological identification. J. Eng. Mech. 141(3), 1–16 (2015)Google Scholar
  7. 7.
    Carboni, B., Lacarbonara, W.: Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dyn. 83(1), 23–29 (2016)Google Scholar
  8. 8.
    Carboni, B., Mancini, C., Lacarbonara, W.: Hysteretic Beam Model for Steel Wire Ropes Hysteresis Identification. Structural Nonlinear Dynamics and Diagonosis. Springer, Berlin (2015)Google Scholar
  9. 9.
    Charalampakis, A.E., Koumousis, V.K.: Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 314, 571–585 (2008)CrossRefGoogle Scholar
  10. 10.
    Charalampakis, A.E., Dimou, C.K.: Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Comput. Struct. 88, 1197–1205 (2010)CrossRefGoogle Scholar
  11. 11.
    Charalampakis, A.E., Koumousis, V.K.: On the response and dissipated energy of Bouc–Wen hysteretic model. J. Sound Vib. 309, 887–895 (2008)CrossRefGoogle Scholar
  12. 12.
    Chungui, Z., Xinong, Z., Shilin, X., Tong, Z., Changchun, Z.: Hybrid modeling of wire cable vibration isolation system through neural network. Math. Comput. Simul. 79, 3160–3173 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ikhouane, F., Hurtado, J.E., Rodellar, J.: Variation of the hysteresis loop with the Bouc–Wen model parameters. Nonlinear Dyn. 48, 361–380 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Part I: forced limit cycle characterization. Nonlinear Dyn. 42, 63–78 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Part II: robust parametric identification. Nonlinear Dyn. 42, 79–95 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model—a survey. Arch. Comput. Methods Eng. 16, 161–188 (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Kennedy, J., Eberhart, RC.: Particle swarm optimization. IEEE International Conference on Neural Networks, Perth, Australia (1995)Google Scholar
  18. 18.
    Kyprianou, A., Worden, K.: Identification of hysteretic systems using the differential evolution algorithm. J. Sound Vib. 248(2), 289–314 (2001)CrossRefGoogle Scholar
  19. 19.
    Lacarbonara, W., Vestroni, F.: Nonlinear phenomena in hysteretic systems. Proc. IUTAM 5, 69–77 (2012)CrossRefGoogle Scholar
  20. 20.
    Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis. Nonlinear Dyn. 32, 235–258 (2003)CrossRefMATHGoogle Scholar
  21. 21.
    Leenen, R.: The Modelling and Identification of an Hysteretic System—The Wire-Rope as a Nonlinear Shock Vibration Isolator. Technical report. DCT 2002.72, Eindhoven University of Technology, 44 p (2002)Google Scholar
  22. 22.
    Li, H.G., Meng, G.: Nonlinear dynamics of a SDOF oscillator with Bouc–Wen hysteresis. Chaos Solitons Fractals 34, 337–343 (2007)CrossRefMATHGoogle Scholar
  23. 23.
    Luo, X., Wang, L., Zhang, Y.: Nonlinear numerical model with contact for Stockbridge vibration damper and experimental validation. J. Vib. Control 22(5), 1217–1227 (2016)Google Scholar
  24. 24.
    Ni, Y.Q., Ko, J.M., Wong, C.W.: Identification of non-linear hysteretic isolators from periodic vibration tests. J. Sound Vib. 217, 737–756 (1998)CrossRefGoogle Scholar
  25. 25.
    Pagano, S., Strano, S.: Wire rope springs for passive vibration control of a light steel structure. WSEAS Trans. Appl. Theor. Mech. 3, 212–221 (2013)Google Scholar
  26. 26.
    Pozo, F., Acho, L., Rodríguez, A., Pujol, G.: Nonlinear modeling of hysteretic systems with double hysteretic loops using position and acceleration information. Nonlinear Dyn. 57, 1–12 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rochdi, Y., Giri, F., Ikhouane, F., Chaoui, F.Z., Rodellar, J.: Parametric identification of nonlinear hysteretic systems. Nonlinear Dyn. 58, 393–404 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Stockbridge, GH.: “Vibration damper,” U.S. Patent No. 1,675,391 (1928)Google Scholar
  29. 29.
    Tinker, M.L., Cutchins, M.A.: Damping phenomena in a wire rope vibration isolation system. J. Sound Vib. 157(1), 7–18 (1992)CrossRefGoogle Scholar
  30. 30.
    Wang, H.X., Gong, X.S., Pan, F., Dang, X.J.: Experimental investigations on the dynamic behaviour of o-type wire-cable vibration isolators. Shock Vib. 2015, 1–12 (2015)Google Scholar
  31. 31.
    Wen, Y.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. 102(2), 249–263 (1976)Google Scholar
  32. 32.
    Ye, M., Wang, X.: Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization. Smart Mater. Struct. 16, 2341–2349 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Nilson Barbieri
    • 1
    • 2
  • Renato Barbieri
    • 3
  • Rodrigo Aparecido da Silva
    • 1
  • Marcos José Mannala
    • 1
  • Lucas de Sant’Anna Vitor Barbieri
    • 1
  1. 1.Pontifícia Universidade Católica do Paraná– PUCPRCuritibaBrazil
  2. 2.Universidade Tecnológica Federal do Paraná -UTFPRCuritibaBrazil
  3. 3.Faculdade de Engenharia de Joinville -FEJJoinvilleBrazil

Personalised recommendations