Advertisement

Nonlinear Dynamics

, Volume 86, Issue 1, pp 489–499 | Cite as

Theoretical analysis of synchronization in delayed complex dynamical networks with discontinuous coupling

  • Yongzheng Sun
  • Zhicai Ma
  • Feng Liu
  • Jie Wu
Original Paper

Abstract

In this paper, we study the synchronization problem of time-delayed complex networks with discontinuous coupling. Sufficient conditions for the synchronization are obtained based on the stability theory of differential equations. The theoretical results show that the time-delayed networks can achieve synchronization even if the coupling is switched off sometimes. We find analytically that the speed of synchronization is proportional to the on–off rate of the coupling and the algebraic connectivity of networks. Finally, the analytical results are confirmed by numerical simulations.

Keywords

Complex network Synchronization Time delay 

Notes

Acknowledgments

We thank the anonymous referees for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11226150 and 61403393), the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS076), and the China Scholarship Council (Grant No. 201308320087).

References

  1. 1.
    Arenas, A., Daz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998)CrossRefGoogle Scholar
  3. 3.
    Wang, X.F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12, 187–192 (2002)CrossRefGoogle Scholar
  4. 4.
    Zhao, M., Zhou, T., Wang, B.-H., Wang, W.-X.: Enhanced synchronizability by structural perturbations. Phys. Rev. E 72, 057102 (2005)CrossRefGoogle Scholar
  5. 5.
    Zhou, C., Motter, A.E., Kurths, J.: Universality in the synchronization of weighted random networks. Phys. Rev. Lett. 96, 034101 (2006)CrossRefGoogle Scholar
  6. 6.
    Duan, Z., Chen, G., Huang, L.: Complex network synchronizability: analysis and control. Phys. Rev. E 76, 056103 (2007)CrossRefGoogle Scholar
  7. 7.
    Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003)CrossRefGoogle Scholar
  8. 8.
    Yan, G., Ren, J., Lai, Y.-C., Lai, C.-H., Li, B.: Controlling complex networks: how much energy is needed? Phys. Rev. Lett. 108, 218703 (2012)CrossRefGoogle Scholar
  9. 9.
    Nagail, K.H., Kori, H.: Noise-induced synchronization of a large population of globally coupled nonidentical oscillators. Phys. Rev. E 81, 065202(R) (2010)CrossRefGoogle Scholar
  10. 10.
    Sun, Y., Zhao, D.: Effects of noise on the outer synchronization of two unidirectionally coupled complex dynamical networks. Chaos 22, 023131 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sun, Y., Shi, H., Bakare, E.A., Meng, Q.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dyn. 76, 519–528 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lu, J., Ho, D.W.C., Cao, J., Kurths, J.: Single impulsive controller for globally exponential synchronization of dynamical networks. Nonlinear Anal. Real World Appl. 14, 581–593 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sun, W., Chen, Z., Lü, J., Chen, S.: Outer synchronization of complex networks with delay via impulse. Nonlinear Dyn. 69, 1751–1764 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circ. Syst. I 51, 2074–2074 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yu, W., Chen, G., Lü, J., Kurths, J.: Synchronization via pinning control on general complex networks. SIAM J. Control Optim. 51, 1395–1416 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jia, Z., Fu, X., Deng, G., Li, K.: Group synchronization in complex dynamical networks with different types of oscillators and adaptive coupling schemes. Commun. Nonlinear Sci. Numer. Simul. 18, 2752–2760 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Zheng, S.: Adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling. Nonlinear Dyn. 67, 2621–2630 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Li, C., Xu, C., Sun, W., Xu, J., Kurths, J.: Outer synchronization of coupled discrete-time networks. Chaos 19, 013106 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Asheghan, M.M., Miguez, J., Hamidi-Beheshti, M.T., Tavazoei, M.S.: Robust outer synchronization between two complex networks with fractional order dynamics. Chaos 21, 033121 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sun, Y., Li, W., Zhao, D.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22, 023152 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73, 2313–2327 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sun, Y., Li, W., Zhao, D.: Convergence time and speed of multi-agent systems in noisy environments. Chaos 22, 043126 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Xu, S., Lam, J.: A survey of linear matrix inequality techniques in stability analysis of delay systems. Int. J. Syst. Sci. 39, 1095–1113 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lin, W., Pu, Y., Guo, Y., Kurths, J.: Oscillation suppression and synchronization: frequencies determine the role of control with time delays. Europhys. Lett. 102, 20003 (2013)CrossRefGoogle Scholar
  25. 25.
    Sun, Y., Lin, W., Erban, R.: Time delay can facilitate coherence in self-driven interacting-particle systems. Phys. Rev. E 90, 062708 (2014)CrossRefGoogle Scholar
  26. 26.
    Wang, Q., Chen, G., Perc, M.: Synchronization bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6, e15851 (2011)Google Scholar
  27. 27.
    Li, C., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Phys. A 343, 263–278 (2004)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lu, W., Chen, T.: Synchronization of coupled connected neural networks with delays. IEEE Trans. Circuits Syst. I(51), 2491–2503 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhou, J., Chen, T.: Synchronization in general complex delayed dynamical networks. IEEE Trans. Circuits Syst. I(53), 733–744 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Guan, Z., Liu, Z., Feng, G., Wang, Y.: Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Trans. Circuits Syst. I(57), 2182–2195 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang, X., Cao, J., Lu, J.: Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans. Circuits Syst. I(60), 363–376 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, Y., Wang, Z., Liang, J.: A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances. Phys. Lett. A 372, 6066–6073 (2008)CrossRefMATHGoogle Scholar
  33. 33.
    Cao, J., Li, P., Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353, 318–325 (2006)CrossRefGoogle Scholar
  34. 34.
    Yu, W., Cao, J., Lü, J.: Global synchronization of linearly hybrid coupled networks with time-varying delay. SIAM J. Appl. Dyn. Syst. 7, 108–133 (2008)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Wang, Y., Bian, T., Xiao, J.-W., Huang, Y.: Robust synchronization of complex switched networks with parametric uncertainties and two types of delays. Int. J. Robust Nonlinear Control 23, 190–207 (2013)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Chen, L., Qiu, C., Huang, H.: Synchronization with on-off coupling: role of time scales in network dynamics. Phys. Rev. E 79, 045101(R) (2009)CrossRefGoogle Scholar
  37. 37.
    Chen, L., Qiu, C., Huang, H., Qi, G., Wang, H.: Facilitated synchronization of complex networks through a discontinuous coupling strategy. Eur. Phys. J. B 76, 625 (2010)CrossRefMATHGoogle Scholar
  38. 38.
    Stilwell, D.J., Bollt, E.M., Roberson, D.G.: Sufficient conditions for fast switching synchronization in time-varying network topologies. SIAM J. Appl. Dyn. Syst. 5, 140 (2006)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)CrossRefMATHGoogle Scholar
  40. 40.
    Hmamed, A.: Further results on the delay-independent asymptotic stability of linear systems. Int. J. Syst. Sci. 22, 1127–1132 (1991)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Ikeda, K., Matsumoto, K.: High-dimensional chaotic behavior in systems with time-delayed feedback. Phys. D 29, 223 (1987)CrossRefMATHGoogle Scholar
  42. 42.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287 (1977)CrossRefGoogle Scholar
  43. 43.
    Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities. Academic Press, New York (1969)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of SciencesChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations