Advertisement

Nonlinear Dynamics

, Volume 86, Issue 1, pp 153–163 | Cite as

Partial stability analysis of nonlinear nonstationary systems via averaging

  • A. Yu. Aleksandrov
  • E. B. Aleksandrova
  • Y. Chen
Original Paper
  • 197 Downloads

Abstract

Certain classes of essentially nonlinear nonstationary systems are studied. With the aid of the Lyapunov direct method and the averaging technique, conditions are obtained under which the zero solutions of the considered systems are stable with respect to all variables and asymptotically stable with respect to a part of variables. It is shown that the proposed approach can be used for the stability analysis of equilibrium positions of nonlinear mechanical systems. Some examples are presented to demonstrate the effectiveness of our results.

Keywords

Nonlinear systems Partial stability Lyapunov functions Nonstationary perturbations Averaging approach Mechanical systems 

Notes

Acknowledgments

The research was supported by the Saint Petersburg State University (Project No. 9.42.1041.2016), by the Russian Foundation for Basic Research (Grant No. 15-58-53017) and by the National Science Foundation of China (Project Nos. 6141101096, 61573030 and 64961273006).

References

  1. 1.
    Aleksandrov, A.Y.: On the asymptotical stability of solutions of non-stationary differential equation systems with homogeneous right hand sides. Doklady Akademii Nauk Rossii 349(3), 295–296 (1996). (in Russian)Google Scholar
  2. 2.
    Aleksandrov, A.Y.: The stability of equilibrium of non-stationary systems. J. Appl. Math. Mech. 60(2), 199–203 (1996)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aleksandrov, A.Y.: On the stability of a certain class of non-linear systems. Prikladnaya Matematika i Mekhanika 64(4), 545–550 (2000). (in Russian)MathSciNetMATHGoogle Scholar
  4. 4.
    Aleksandrov, A.Y., Aleksandrova, E.B.: Asymptotic stability conditions for a class of hybrid mechanical systems with switched nonlinear positional forces. Nonlinear Dyn. 83(4), 2427–2434 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aleksandrov, A.Y., Aleksandrova, E.B., Zhabko, A.P.: Stability analysis for a class of nonlinear nonstationary systems via averaging. Nonlinear Dyn. Syst. Theory 13(4), 332–343 (2013)MathSciNetMATHGoogle Scholar
  6. 6.
    Aleksandrov, A.Y., Aleksandrova, E.B., Zhabko, A.P.: Asymptotic stability conditions for certain classes of mechanical systems with time delay. WSEAS Trans. Syst. Control 9, 388–397 (2014)Google Scholar
  7. 7.
    Aleksandrov, A.Y., Antipov, K.A., Platonov, A.V., Tikhonov, A.A.: Electrodynamic attitude stabilization of a satellite in the Konig frame. Nonlinear Dyn. 82(3), 1493–1505 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aleksandrov, A.Y., Zhabko, A.P.: On the asymptotic stability of solutions of nonlinear systems with delay. Sib. Math. J. 53(3), 393–403 (2012)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Arcak, M., Teel, A.: Input-to-state stability for a class of Lurie systems. 38, 1945–1949 (2002)Google Scholar
  10. 10.
    Beards, C.F.: Engineering Vibration Analysis with Application to Control Systems. Edward Arnold, London (1995)Google Scholar
  11. 11.
    Binazadeh, T., Yazdanpanah, M.J.: Partial stabilization of uncertain nonlinear systems. ISA Trans. 51, 298–303 (2012)CrossRefGoogle Scholar
  12. 12.
    Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach, New York (1961)Google Scholar
  13. 13.
    Cao, Z., Hou, X.: A family of adaptive \(H^\infty \) controllers for switched dissipative Hamiltonian systems. WSEAS Trans. Syst. Control 10, 436–444 (2015)Google Scholar
  14. 14.
    Chellaboina, V.S., Haddad, W.M.: A unification between partial stability and stability theory for time-varying systems. IEEE Control Syst. Mag. 22(6), 66–75 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dohnal, F., Verhulst, F.: Averaging in vibration suppression by parametric stiffness excitation. Nonlinear Dyn. 54(3), 231–248 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Fisher, J., Bhattacharya, R.: Analysis of partial stability problems using sum of squares techniques. Automatica 45, 724–730 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gendelman, O.V., Lamarque, C.H.: Dynamics of linear oscillator coupled to strongly nonlinear attachment with multiple states of equilibrium. Chaos Solitons Fractals 24, 501–509 (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gourdon, E., Lamarque, C.H., Pernot, S.: Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear attachment. Nonlinear Dyn. 50(4), 793–808 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Halanay, A.: Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York (1963)MATHGoogle Scholar
  20. 20.
    Hu, Q.L., Xiao, B.: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64(1), 13–23 (2011)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hu, W., Wang, J., Li, X.: An approach of partial control design for system control and synchronization. Chaos Solitons Fractals 39(3), 1410–1417 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)Google Scholar
  23. 23.
    Kawski, M.: Homogeneous stabilizing feedback laws. Control Theory Adv. Technol. 6(4), 497–516 (1990)MathSciNetGoogle Scholar
  24. 24.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ (2002)MATHGoogle Scholar
  25. 25.
    Khapaev, M.M.: Averaging in Stability Theory. Kluwer, Dordrecht (1993)MATHCrossRefGoogle Scholar
  26. 26.
    Liu, P., Tang, J., Huang, D.: Novel criterion for synchronization stability of complex dynamical networks with coupling lags. WSEAS Trans. Syst. Control 10, 263–269 (2015)Google Scholar
  27. 27.
    Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, London (1992)MATHGoogle Scholar
  28. 28.
    Malkin, I.G.: Theory of Stability of Motion. Nauka, Moscow (1966). (in Russian)MATHGoogle Scholar
  29. 29.
    Mel’nikov, G.I.: Dynamics of Nonlinear Mechanical and Electromechanical Systems. Mashinostroenie, Leningrad (1975). (in Russian)Google Scholar
  30. 30.
    Merkin, D.R.: Introduction to the Theory of Stability. Springer, New York (1997)Google Scholar
  31. 31.
    Morin, P., Pomet, J.-B., Samson, C.: Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of Lie brackets in closed loop. SIAM J. Control Optim. 38(1), 22–49 (1999)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Peuteman, J., Aeyels, D.: Averaging results and the study of uniform asymptotic stability of homogeneous differential equations that are not fast time-varying. SIAM J. Control Optim. 37(4), 997–1010 (1999)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Peuteman, J., Aeyels, D.: Averaging techniques without requiring a fast time-varying differential equation. Automatica 47, 192–200 (2011)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Rivin, E.I.: Passive Vibration Isolation. ASME Press, New York (2003)CrossRefGoogle Scholar
  35. 35.
    Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19, 467–473 (1992)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Rouche, N., Habets, P., Laloy, M.: Stability Theory by Liapunov’s Direct Method. Springer, New York (1977)MATHCrossRefGoogle Scholar
  37. 37.
    Rumyantsev, V.V.: On asymptotic stability and instability of motion with respect to a part of the variables. J. Appl. Math. Mech. 35(1), 10–30 (1971)MathSciNetMATHGoogle Scholar
  38. 38.
    Shang, Y.: Global finite-time stabilization of stochastic nonlinear systems with low-order nonlinearities. WSEAS Trans. Syst. Control 10, 127–136 (2015)Google Scholar
  39. 39.
    Sri Namachchivaya, N., Van Roessel, H.J.: Averaging of noisy nonlinear systems with rapidly oscillating and decaying components. Nonlinear Dyn. 36(2), 329–347 (2004)Google Scholar
  40. 40.
    Tikhomirov, O.G.: Stability of homogeneous nonstationary odinary differential equations systems. Vestnik St. Petersburg Univ. Ser. 10(3), 123–130 (2007). (in Russian)MATHGoogle Scholar
  41. 41.
    Vorotnikov, V.I.: Partial Stability and Control. Birkhauser, Boston (1998)MATHGoogle Scholar
  42. 42.
    Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. 76(3), 1753–1760 (2014)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Zubov, V.I.: Methods of A.M. Lyapunov and Their Applications. P. Noordhoff Ltd, Groningen (1964)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Yu. Aleksandrov
    • 1
  • E. B. Aleksandrova
    • 1
  • Y. Chen
    • 2
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.College of Metropolitan TransportationBeijing University of TechnologyBeijingChina

Personalised recommendations