Nonlinear Dynamics

, Volume 85, Issue 4, pp 2801–2808 | Cite as

\({\mathcal {PT}}\)-symmetric and \({\mathcal {PT}}\)-antisymmetric superposed breathers in (3\(+\)1)-dimensional inhomogeneous nonlinear couplers with balanced gain and loss

  • Yi-Xiang Chen
Original Paper


We discuss a (3+1)-dimensional variable-coefficient coupled nonlinear Schrödinger equation with different diffractions and dispersion in parity-time (\({\mathcal {PT}}\)) symmetric inhomogeneous nonlinear couplers with balanced gain and loss, and derive \({\mathcal {PT}}\)-symmetric and \({\mathcal {PT}}\)-antisymmetric superposed breather and crossing two-breather solutions. The recurrence of controllable superposed breathers including restraint, maintenance and postpone is firstly reported in the dispersion/diffraction decreasing system. This recurrence of controllable behaviors originates from different diffractions and dispersion of systems. Moreover, controllable excitations including restraint, maintenance and postpone of crossing two breathers are also studied in the dispersion/diffraction decreasing system.


(3\(+\)1)-dimensional coupled nonlinear Schrödinger equation \({\mathcal {PT}}\)-symmetric and \({\mathcal {PT}}\)-antisymmetric superposed breathers Recurrence of controllable behaviors 



This work was supported by the project of technology office in Zhejiang Province (Grant No. 2014C32006), National Natural Science Foundation of China (Grant No. 11374254) and the higher school visiting scholar development project (Grant No. FX2013103).


  1. 1.
    Zhou, Q., Yu, H., Xiong, X.: Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. Nonlinear Dyn. 80, 983–987 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: optical solitons in cascaded system with spatio-temporal dispersion. Optoelectron. Adv. Mater. Rapid Commun. 17, 74–81 (2015)Google Scholar
  3. 3.
    Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhong, W.P., Belic, M.R.: Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity. Ann. Phys. 351, 787–796 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. Nonlinear Dyn. 81, 733–738 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dai, C.Q., Xu, Y.J.: Exact solutions for a Wick-type stochastic reaction Duffing equation. Appl. Math. Model. 39, 7420–7426 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhou, Q., Liu, N., Liu, Y.X., Yu, H., Wei, C., Yao, P., Zhang, H.J.: Exact optical solitons in metamaterials with cubic-quintic nonlinearity and third-order dispersion. Nonlinear Dyn. 80, 1365–1371 (2015)CrossRefGoogle Scholar
  8. 8.
    Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, A.: Optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)CrossRefGoogle Scholar
  10. 10.
    Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)CrossRefGoogle Scholar
  11. 11.
    Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in Birefringent fibers with four-wave mixing for kerr law nonlinearity. Rom. J. Phys. 59, 582–589 (2014)Google Scholar
  12. 12.
    Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrodinger equation. Commun. Nonlinear Sci. Num. Simul. 18, 2426–2435 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Mus-slimani, Z.H.: PT-symmetric optical lattices. Phys. Rev. A 81, 063807 (2010)CrossRefGoogle Scholar
  14. 14.
    Mayteevarunyoo, T., Malomed, B.A., Reoksabutr, A.: Solvable model for solitons pinned to a parity-time-symmetric dipole. Phys. Rev. A 88, 022919 (2013)Google Scholar
  15. 15.
    Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)CrossRefGoogle Scholar
  16. 16.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)CrossRefGoogle Scholar
  18. 18.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)CrossRefGoogle Scholar
  19. 19.
    Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)CrossRefMATHGoogle Scholar
  20. 20.
    Alexeeva, N.V., Barashenkov, I.V., Sukhorukov, A.A., Kivshar, Y.S.: Optical solitons in PT-symmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (2012)CrossRefGoogle Scholar
  21. 21.
    Bludov, YuV, Konotop, V.V., Malomed, B.A.: Stable dark solitons in PT-symmetric dual-core waveguides. Phys. Rev. A 87, 013816 (2013)CrossRefGoogle Scholar
  22. 22.
    Bludov, YuV, Driben, R., Konotop, V.V., Malomed, B.A.: Instabilities, solitons and rogue waves in PT-coupled nonlinear waveguides. J. Opt. 15, 064010 (2013)CrossRefGoogle Scholar
  23. 23.
    Dai, C.Q., Huang, W.H.: Multi-rogue wave and multi-breather solutions in PT-symmetric coupled waveguides. Appl. Math. Lett. 32, 35–40 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Burlak, G., Malomed, B.A.: Stability boundary and collisions of two-dimensional solitons in PT-symmetric couplers with the cubic-quintic nonlinearity. Phys. Rev. E 88, 062904 (2013)CrossRefGoogle Scholar
  25. 25.
    Bludov, YuV, Hang, C., Huang, G.X., Konotop, V.V.: PT-symmetric coupler with a coupling defect: soliton interaction with exceptional point. Opt. Lett. 39, 3382–3385 (2014)CrossRefGoogle Scholar
  26. 26.
    Li, X., Xie, X.T.: Solitons in PT-symmetric nonlinear dissipative gratings. Phys. Rev. A 90, 033804 (2014)CrossRefGoogle Scholar
  27. 27.
    Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov-Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862–29867 (2014)CrossRefGoogle Scholar
  28. 28.
    Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, J.T., Zhang, X.T., Meng, M., Liu, Q.T., Wang, Y.Y., Dai, C.Q.: Control and management of the combined Peregrine soliton and Akhmediev breathers in PT-symmetric coupled waveguides. Nonlinear Dyn. 84, 473–479 (2016)Google Scholar
  30. 30.
    Chen, H.Y., Zhu, H.P.: Controllable behaviors of spatiotemporal breathers in a generalized variable-coefficient nonlinear Schrodinger model for material mechanics and optical fibers. Nonlinear Dyn. 81, 141–149 (2015)CrossRefGoogle Scholar
  31. 31.
    Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)CrossRefGoogle Scholar
  32. 32.
    Dai, C.Q., Wang, Y.Y., Tian, Q., Zhang, J.F.: The management and containment of self-similar rogue waves in the inhomogeneous nonlinear Schrodinger equation. Ann. Phys. 327, 512–521 (2012)CrossRefMATHGoogle Scholar
  33. 33.
    Zhu, H.P.: Spatiotemporal breather in diffraction decreasing media. Wave Motion 51, 438–444 (2014)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007). (2002)CrossRefGoogle Scholar
  35. 35.
    Ramezani, H., Kottos, T.: Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 043803 (2010)CrossRefGoogle Scholar
  36. 36.
    Abdullaeev, F.: Theory of Solitons in Inhomogeneous Media. Wiley, New York (1994)Google Scholar
  37. 37.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)CrossRefGoogle Scholar
  38. 38.
    Serkin, V. N., Hasegawa, A.: Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion management. IEEE J. Sel. Top. Quantum Electron. 8 418–431Google Scholar
  39. 39.
    Serkin, V.N., Belyaeva, T.L.: High-energy optical Schrödinger solitons. JETP Lett. 74, 573 (2001)CrossRefGoogle Scholar
  40. 40.
    Dai, C.Q., Wang, Y.Y.: Spatiotemporal localizations in (3 + 1) -dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn 83, 2453–2459 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhou, G.Q., Dai, C.Q., Chen, Y.X.: Nonlinear tunnelling of superposed Akhmediev breather in PT-symmetric inhomogeneous nonlinear couplers with gain and loss. Opt. Commun. 345, 31–36 (2015)CrossRefGoogle Scholar
  42. 42.
    Dudley, J.M., Dias, F., Genty, G., Erkintalo, M.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755–764 (2014)CrossRefGoogle Scholar
  43. 43.
    Dudley, J.M., Genty, G., Eggleton, B.J.: Harnessing and control of optical rogue waves in supercontinuum generation. Opt. Express 16, 3644–3651 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Electronics InformationZhejiang University of Media and CommunicationsHangzhouPeople’s Republic of China
  2. 2.Institute of Digital Media and Communication TechnologyZhejiang University of Media and CommunicationsHangzhouPeople’s Republic of China

Personalised recommendations