Advertisement

Nonlinear Dynamics

, Volume 85, Issue 4, pp 2549–2567 | Cite as

Prey cannibalism alters the dynamics of Holling–Tanner-type predator–prey models

  • Aladeen Basheer
  • Emmanuel Quansah
  • Suman Bhowmick
  • Rana D. Parshad
Original Paper

Abstract

Cannibalism, which is the act of killing and consumption of conspecifics, has been considered primarily in the predator, despite strong ecological evidence that it exists among prey. In the current manuscript, we investigate both the ODE and spatially explicit forms of a Holling–Tanner model, with ratio-dependent functional response, and show that cannibalism in the predator provides a stabilizing influence as expected. However, when cannibalism in the prey is considered, we show that it cannot stabilize the unstable interior equilibrium in the ODE case, in certain parameter regime, but can destabilize the stable interior equilibrium, leading to a stable limit cycle or “life boat” mechanism, for prey. We also show that prey cannibalism can lead to pattern forming Turing dynamics, which is an impossibility without it. The effects of a stochastic prey cannibalism rate are also considered.

Keywords

Holling–Tanner model Prey cannibalism Stability Turing instability White noise 

Mathematics Subject Classification

Primary 35B36 37C75 60H35 Secondary 92D25 92D40 

Notes

Acknowledgments

We would like to acknowledge very helpful conversations with Professor Volker Rudolf, in the Department of Biosciences at Rice University, on various ecological concepts pertaining to prey cannibalism, and subsequent mathematical modeling of such phenomenon.

References

  1. 1.
    Abrams, P.A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15(8), 337–341 (2000)CrossRefGoogle Scholar
  2. 2.
    Asllani, M., Challenger, J.D., Pavone, F.S., Sacconi, L., Fanelli, D.: The theory of pattern formation on directed networks. Nat. Commun. 5, 1–9 (2014)Google Scholar
  3. 3.
    Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Math. Biosci. 236(1), 64–76 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Biswas, S., Chatterjee, S., Chattopadhyay, J.: Cannibalism may control disease in predator population: result drawn from a model based study. Math. Methods Appl. Sci. 38(11), 2272–2290 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Buonomo, B., Lacitignola, D.: On the stabilizing effect of cannibalism in stage-structured population models. Math. Biosci. Eng. 3(4), 717–731 (2006)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buonomo, B., Lacitignola, D., Rionero, S.: Effect of prey growth and predator cannibalism rate on the stability of a structured population model. Nonlinear Anal. Real World Appl. 11(2), 1170–1181 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chan, A.A.Y.-H., Giraldo-Perez, P., Smith, S., Blumstein, D.T.: Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol. Lett. 6(4), 458–461 (2010)CrossRefGoogle Scholar
  8. 8.
    Chow, Y., Jang, S.R.-J.: Cannibalism in discrete-time predator-prey systems. J. Biol. Dyn. 6(1), 38–62 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Claessen, D., De Roos, A.M., Persson, L.: Population dynamic theory of size-dependent cannibalism. Proc. R. Soc. Lond. B Biol. Sci. 271(1537), 333–340 (2004)CrossRefGoogle Scholar
  10. 10.
    Don, W.S., Solomonoff, A.: Accuracy and speed in computing the chebyshev collocation derivative. SIAM J. Sci. Comput. 16(6), 1253–1268 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey-predator systems. Nonlinear Dyn. 67(4), 2543–2548 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Francis, C.D., Ortega, C.P., Cruz, A.: Noise pollution changes avian communities and species interactions. Curr. Biol. 19(16), 1415–1419 (2009)CrossRefGoogle Scholar
  13. 13.
    Getto, P., Diekmann, O., De Roos, A.: On the (dis) advantages of cannibalism. J. Math. Biol. 51(6), 695–712 (2005)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gottlieb, D., Lustman, L.: The spectrum of the chebyshev collocation operator for the heat equation. SIAM J Numer. Anal. 20(5), 909–921 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55(3), 763–783 (1995)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kelkel, J., Surulescu, C.: On a stochastic reaction-diffusion system modeling pattern formation on seashells. J. Math. Biol. 60(6), 765–796 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kelly, D.: The culture that still practices cannibalism (Oct. 2013)Google Scholar
  18. 18.
    Kohlmeier, C., Ebenhöh, W.: The stabilizing role of cannibalism in a predator-prey system. Bull. Math. Biol. 57(3), 401–411 (1995)CrossRefMATHGoogle Scholar
  19. 19.
    Leslie, P., Gower, J.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika. 47, 219–234 (1960)Google Scholar
  20. 20.
    Li, L., Wang, Z.-J.: Dynamics in a predator-prey model with space and noise. Appl. Math. Comput. 219(12), 6542–6547 (2013)MathSciNetMATHGoogle Scholar
  21. 21.
    Maini, P.K., Woolley, T.E., Baker, R.E., Gaffney, E.A., Lee, S.S.: Turing’s model for biological pattern formation and the robustness problem. Interface Focus, rsfs20110113 (2012)Google Scholar
  22. 22.
    Murray, J.D.: Mathematical biology I: an introduction, volume 17 of interdisciplinary applied mathematics (2002)Google Scholar
  23. 23.
    Okubo, A., Levin, S.A.: Diffusion and ecological problems: modern perspectives, vol. 14. Springer, New York (2013)Google Scholar
  24. 24.
    Pennell, C.: Cannibalism in early modern North Africa. Br. J. Middle Eastern Stud. 18(2), 169–185 (1991)CrossRefGoogle Scholar
  25. 25.
    Polis, G.A.: The evolution and dynamics of intraspecific predation. Ann. Rev. Ecol. Syst. 12, 225–251 (1981)Google Scholar
  26. 26.
    Press, A.: Indian doc focuses on hindu cannibal sect (Oct. 2005)Google Scholar
  27. 27.
    Rudolf, V.H.: Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades. Ecology 88(12), 2991–3003 (2007)CrossRefGoogle Scholar
  28. 28.
    Rudolf, V.H.: The interaction of cannibalism and omnivory: consequences for community dynamics. Ecology 88(11), 2697–2705 (2007)CrossRefGoogle Scholar
  29. 29.
    Rudolf, V.H.: The impact of cannibalism in the prey on predator-prey systems. Ecology 89(11), 3116–3127 (2008)CrossRefGoogle Scholar
  30. 30.
    Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey-predator model with the allee effect. Ecol. Complex. 11, 12–27 (2012)CrossRefGoogle Scholar
  31. 31.
    Siemers, B.M., Schaub, A.: Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proc. R. Soc. Lond. B Biol. Sci. 278(1712), 1646–1652 (2011)CrossRefGoogle Scholar
  32. 32.
    Solis, F.J., Ku-Carrillo, R.A.: Birth rate effects on an age-structured predator-prey model with cannibalism in the prey. In: Abstract and applied analysis, vol. 501, p. 241312. Hindawi Publishing Corporation, Cairo (2014)Google Scholar
  33. 33.
    Strogatz, S.H.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview press, Boulder (2014)Google Scholar
  34. 34.
    Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, B.-L.: Rich dynamics in a predator-prey model with both noise and periodic force. BioSystems 100(1), 14–22 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. Nonlinear Dyn. 58(1–2), 75–84 (2009)CrossRefMATHGoogle Scholar
  36. 36.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  37. 37.
    White, K., Gilligan, C.: Spatial heterogeneity in three species, plant-parasite-hyperparasite, systems. Philos. Trans. R. Soc. B Biol. Sci. 353(1368), 543–557 (1998)CrossRefGoogle Scholar
  38. 38.
    Wyller, J., Blomquist, P., Einevoll, G.T.: Turing instability and pattern formation in a two-population neuronal network model. Phys. D 225(1), 75–93 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Zhang, L., Zhang, C.: Rich dynamic of a stage-structured prey-predator model with cannibalism and periodic attacking rate. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4029–4040 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Aladeen Basheer
    • 1
  • Emmanuel Quansah
    • 1
  • Suman Bhowmick
    • 1
  • Rana D. Parshad
    • 1
  1. 1.Department of MathematicsClarkson UniversityPotsdamUSA

Personalised recommendations