Skip to main content
Log in

Dynamics of a delayed diffusive predator–prey model with hyperbolic mortality

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to consider a time-delayed diffusive prey–predator model with hyperbolic mortality. We focus on the impact of time delay on the stability of positive constant solution of delayed differential equations and positive constant equilibrium of delayed diffusive differential equations, respectively, and we investigate the similarities and differences between them. Our conclusions show that when time delay continues to increase and crosses through some critical values, a family of homogenous and inhomogeneous periodic solutions emerge. Particularly, we find the minimum value of time delay, which is often hard to be found. We also consider the nonexistence and existence of steady state solutions to the reaction–diffusion model without time delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yuan, R., Jiang, W.H.: Saddle-node-Hopf bifurcation in a modified Leslie–Gower predator–prey model with time-delay and prey harvesting. J. Math. Anal. Appl. 422(2), 1072–1090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sharma, A., Sharma, A.K., Agnihotri, K.: Analysis of a toxin producing phytoplankton–zooplankton interaction with Holling IV type scheme and time delay. Nonlinear Dyn. 81, 13–25 (2015)

    Article  MathSciNet  Google Scholar 

  3. Zhang, X., Zhang, Q.L.: Hopf analysis of a differential-algebraic predator–prey model with Allee effect and time delay. Int. J. Biomath. 08, 1550041 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Misra, O.P., Sinha, P., Singh, C.: Dynamics of one-prey two-predator system with square root functional response and time lag. J. Biol. Chem. 6(3), 375–384 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Moussaoui, A., Bassaid, S., Dads, E.H.A.: The impact of water level fluctuations on a delayed prey–predator model. Nonlinear Anal. Real World Appl. 21, 170–184 (2015)

  6. Liu, C., Zhang, Q.L., Li, J.N., Yue, W.Q.: Stability analysis in a delayed prey–predator-resource model with harvest effort and stage structure. Appl. Math. Comput. 238, 177–192 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Chakraborty, K., Haldar, S., Kar, T.K.: Global stability and bifurcation analysis of a delay induced prey–predator system with stage structure. Nonlinear Dyn. 73, 1307–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Song, X.L., Wang, C.N., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)

    Article  Google Scholar 

  10. Ma, J., Qin, H.X., Song, X.L., Chu, R.T.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Modern Phys. B. 29(1), 1450239 (2015)

    Article  Google Scholar 

  11. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  12. Ruan, S.G.: On nonlinear dynamics of predator–prey models with discrete Delay. Math. Model. Nat. Phenom 4, 140–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tian, C.R., Zhang, L.: Delay-driven irregular spatiotemporal patterns in a plankton system. Phys. Rev. E. 88, 012713 (2013)

    Article  Google Scholar 

  14. Hu, G., Li, W.: Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects. Nonlinear Anal. Real World Appl. 11, 819–826 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ge, Z., He, Y.: Diffusion effect and stability analysis of a predator–prey system described by a delayed reaction-diffusion equations. J. Math. Anal. Appl. 339, 1432–1450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yan, X.: Stability and Hopf bifurcation for a delayed prey–predator system with diffusion effects. Appl. Math. Comput. 192, 552–566 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Su, Y., Wei, J.J., Shi, J.P.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen S. S., Shi J. P., Wei J. J.: Global stability and Hopf bifurcation in a delayed diffusive Leslie–Gower predator–prey system. Int. J. Bifurc. Chaos 22 (3) (2012)

  19. Zuo, W.J., Wei, J.J.: Stability and bifurcation analysis in a diffusive Brusselator system with delayed feedback control. Int. J. Bifurc. Chaos 22, 1250037 (2012)

    Article  MATH  Google Scholar 

  20. Li, Y.: Hopf bifurcation for a general Brusselator model. Nonlinear Anal. Real World Appl. 28, 32–47 (2016)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Wang, M.X.: Dynamics of a diffusive predator–prey model with modified Leslie–Gower term and Michaelis-Menten type prey harvesting. Acta Appl. Math. 69, 398–410 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, T.H., Xing, Y.P., Zang, H., Han, M.A.: Spatio-temporal dynamics of a reactiondiffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78(1), 1–13 (2014)

    Article  MathSciNet  Google Scholar 

  23. Sambath, M., Balachandran, K.: Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality. Complexity. (2015). doi:10.1002/cplx.21708

    MATH  Google Scholar 

  24. Peng, R.: Qualitative analysis of steady states to the Sel’kov model. J. Differ. Equ. 241, 386–398 (2007)

    Article  MATH  Google Scholar 

  25. Peng, R., Shi, J.P., Wang, M.X.: Stationary pattern of a ratio-dependent food chain model with diffusion. SIAM J. Appl. Math. 67, 1479–1503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peng, R., Wang, M.X.: Positive steady-state solutions of the Noyes-Field model for Belousov–Zhabotinskii reaction. Nonlinear Anal. TMA. 56(3), 451–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, M.X.: Non-constant positive steady states of the Sel’kov model. J. Differ. Equ. 190(2), 600–620 (2003)

    Article  MATH  Google Scholar 

  28. Li, Y.: Steady-state solution for a general Schnakenberg model. Nonlinear Anal. Real World Appl. 12, 1985–1990 (2011)

  29. Li, Y., Wang, M.X.: Stationary pattern of a diffusive prey–predator model with trophic intersections of three levels. Nonlinear Anal. Real World Appl. 14, 1806–1816 (2013)

  30. Wang, J.F., Shi, J.P., Wei, J.J.: Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey. J. Differ. Equ. 4(3), 1276–1304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruan S. G., Wei J. J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynamics of continuous, Discrete and Impulsive Systems Series A: Math. Anal. 10: 863–874 (2003)

  32. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  33. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pang, Y.H., Wang, M.X.: Strategy and stationary pattern in a three-species predator–prey model. J. Differ. Equ. 200, 245–273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nirenberg, L.: Topics in Nonlinear Functional Analysis. American Mathematical Society, Providence (2001)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11501572) and by the Fundamental Research Funds for the Central Universities of China (No. 15CX02076A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Dynamics of a delayed diffusive predator–prey model with hyperbolic mortality. Nonlinear Dyn 85, 2425–2436 (2016). https://doi.org/10.1007/s11071-016-2835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2835-9

Keywords

Mathematics Subject Classification

Navigation