Skip to main content
Log in

Nonlinear dynamics of charged particle slipping on rough surface with periodic force

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with two types of period-doubling bifurcation phenomena in a particle system, where the charged particle slips on rough surface with periodic force. The charged particle system is characterized by a two-dimensional nonlinear mapping, i.e., the Fermi–Ulam model (FUM) with dissipation. Based on the dissipative FUM, theoretical investigations are performed to identify the two types of period-doubling bifurcations with the assist of eigenvalue analysis approach and further to reveal their underlying mechanisms of the particle system as the strength of the periodic force for the particle system increases. Finally, bifurcation diagram and the maximum Lyapunov exponent are employed to analyze the dynamical evolution of bifurcation behaviors in the particle system quantitatively. These results are helpful for the in-depth understanding of transport mechanism of charged particle system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75(8), 1169 (1949). doi:10.1103/Phys.Rev.83.1193

    Article  MATH  Google Scholar 

  2. Saif, F., Bialynicki-Birula, I., Fortunato, M., Schleich, W.P.: Fermi accelerator in atom optics. Phys. Rev. A 58(6), 4779 (1998). doi:10.1103/Phys.Rev.A.58.4779

    Article  Google Scholar 

  3. Saif, F.: Dynamical localization and signatures of classical phase space. Phys. Lett. A 274(3), 98–103 (2000). doi:10.1016/S0375-9601(00)00538-7

    Article  MATH  Google Scholar 

  4. Blandford, R., Eichler, D.: Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154(1), 1–75 (1987). doi:10.1016/0370-1573(87)90134-7

    Article  Google Scholar 

  5. Michalek, G., Ostrowski, M., Schlickeiser, R.: Cosmic-ray momentum diffusion in magnetosonic versus alfvénic turbulent field. Sol. Phys. 184(2), 339–352 (1999). doi:10.1023/A:1005028205111

    Article  Google Scholar 

  6. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002). doi:10.1016/S0370-1573(02)00331-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Venegeroles, R.: Universality of algebraic laws in Hamiltonian systems. Phys. Rev. Lett. 102(6), 064101 (2009). doi:10.1103/PhysRevLett.102.064101

    Article  Google Scholar 

  8. Livorati, A.L., Kroetz, T., Dettmann, C.P., Caldas, I.L., Leonel, E.D.: Stickiness in a bouncer model: a slowing mechanism for Fermi acceleration. Phys. Rev. E 86(3), 036203 (2012). doi:10.1103/PhysRevE.86.036203

    Article  Google Scholar 

  9. Lichtenberg, A.J., Lieberman, M.: Regular and Chaotic Motion. Applied Mathematical Sciences. Springer, New York (1992)

    MATH  Google Scholar 

  10. Ladeira, D.G., da Silva, J.K.L.: Scaling of dynamical properties of the Fermi–Ulam accelerator. Phys. A 387(23), 5707–5715 (2008). doi:10.1016/j.physa.2008.06.013

    Article  Google Scholar 

  11. Liebchen, B., Büchner, R., Petri, C., Diakonos, F.K., Lenz, F., Schmelcher, P.: Phase space interpretation of exponential Fermi acceleration. New J. Phys. 13(9), 093039 (2011). doi:10.1088/1367-2630/13/9/093039

    Article  Google Scholar 

  12. Lamba, H.: Chaotic, regular and unbounded behavior in the elastic impact oscillator. Phys. D 82(1–2), 117–135 (1995). doi:10.1016/0167-2789(94)00222-C

    Article  MathSciNet  MATH  Google Scholar 

  13. Ladeira, D.G., da Silva, J.K.L.: Time-dependent properties of a simplified Fermi–Ulam accelerator model. Phys. Rev. E 73(2), 026201 (2006). doi:10.1103/PhysRevE.73.026201

    Article  Google Scholar 

  14. Leonel, E.D., Livorati, A.L., Cespedes, A.M.: A theoretical characterization of scaling properties in a bouncing ball system. Phys. A 404, 279–284 (2014). doi:10.1016/j.physa.2014.02.053

    Article  MathSciNet  Google Scholar 

  15. Leonel, E.D., McClintock, P.V.: A hybrid Fermi–Ulam-bouncer model. J. Phys. A Math. Gen. 38(4), 823 (2005). doi:10.1088/0305-4470/38/4/004

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuwana, C.M., de Oliveira, J.A., Leonel, E.D.: A family of dissipative two-dimensional mappings: chaotic, regular and steady state dynamics investigation. Phys. A 395, 458–465 (2014). doi:10.1016/j.physa.2013.10.032

    Article  MathSciNet  Google Scholar 

  17. Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors in crisis. Phys. Rev. Lett. 48(22), 1507 (1982). doi:10.1103/PhysRevLett.48.1507

    Article  MathSciNet  Google Scholar 

  18. Leonel, E.D., McClintock, P.V.: A crisis in the dissipative Fermi accelerator model. J. Phys. A Math. Gen. 38(23), L425–L430 (2005). doi:10.1088/0305-4470/38/23/L02

    Article  MathSciNet  MATH  Google Scholar 

  19. Leonel, E.D., de Carvalho, R.E.: A family of crisis in a dissipative Fermi accelerator model. Phys. Lett. A 364(6), 475–479 (2007). doi:10.1016/j.physleta.2006.11.097

    Article  Google Scholar 

  20. Luck, J., Mehta, A.: Bouncing ball with a finite restitution: chattering, locking, and chaos. Phys. Rev. E 48(5), 3988 (1993). doi:10.1103/PhysRevE.48.3988

    Article  MathSciNet  Google Scholar 

  21. Luna-Acosta, G.A.: Regular and chaotic dynamics of the damped Fermi accelerator. Phys. Rev. A 42(12), 7155 (1990). doi:10.1103/PhysRevA.42.7155

    Article  Google Scholar 

  22. Oliveira, D.F., Leonel, E.D.: Parameter space for a dissipative Fermi–Ulam model. New J. Phys. 13(12), 123012 (2011). doi:10.1088/1367-2630/13/12/123012

    Article  Google Scholar 

  23. Leonel, E.D., McClintock, P.V.: Dissipative area-preserving one-dimensional Fermi accelerator model. Phys. Rev. E 73(6), 066223 (2006). doi:10.1103/PhysRevE.73.066223

    Article  Google Scholar 

  24. da Costa, D.R.: A dissipative Fermi–Ulam model under two different kinds of dissipation. Commun. Nonlinear Sci. Numer. Simul. 22(1), 1263–1274 (2015). doi:10.1016/j.cnsns.2014.09.006

    Article  MathSciNet  MATH  Google Scholar 

  25. Leonel, E.D., McClintock, P.V.: Effect of a frictional force on the Fermi–Ulam model. J. Phys. A Math. Gen. 39(37), 11399 (2006). doi:10.1088/0305-4470/39/37/005

    Article  MathSciNet  MATH  Google Scholar 

  26. Ladeira, D.G., Leonel, E.D.: Dynamical properties of a dissipative hybrid Fermi–Ulam-bouncer model. Chaos 17(1), 013119 (2007). doi:10.1063/1.2712014

    Article  MathSciNet  MATH  Google Scholar 

  27. Pratt, E., Léger, A., Zhang, X.: Study of a transition in the qualitative behavior of a simple oscillator with Coulomb friction. Nonlinear Dyn. 74(3), 517–531 (2013). doi:10.1007/s11071-013-0985-6

  28. Ladeira, D.G., Leonel, E.D.: Competition between suppression and production of Fermi acceleration. Phys. Rev. E 81(3), 036216 (2010). doi:10.1103/PhysRevE.81.036216

    Article  Google Scholar 

  29. Ladeira, D.G., Leonel, E.D.: Dynamics of a charged particle in a dissipative Fermi–Ulam model. Commun. Nonlinear Sci. Numer. Simul. 20(2), 546–558 (2015). doi:10.1016/j.cnsns.2014.06.003

    Article  Google Scholar 

  30. Oliveira, D.F., Leonel, E.D.: Dynamical properties for the problem of a particle in an electric field of wave packet: low velocity and relativistic approach. Phys. Lett. A 376(47), 3630–3637 (2012). doi:10.1016/j.physleta.2012.10.052

    Article  Google Scholar 

  31. Amer, Y.: Resonance and vibration control of two-degree-of-freedom nonlinear electromechanical system with harmonic excitation. Nonlinear Dyn. 81(4), 2003–2019 (2015). doi:10.1007/s11071-015-2121-2

    Article  MathSciNet  Google Scholar 

  32. Howard, J., MacKay, R.: Linear stability of symplectic maps. J. Math. Phys. 28(5), 1036–1051 (1987). doi:10.1063/1.527544

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 51577141, 61571357) and Creative Foundation of the State Key Lab of Electrical Insulation and Power Equipment, China (Grant Nos. EIPE14308, EIPE 15309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Ding, H., Zhang, H. et al. Nonlinear dynamics of charged particle slipping on rough surface with periodic force. Nonlinear Dyn 85, 2247–2259 (2016). https://doi.org/10.1007/s11071-016-2826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2826-x

Keywords

Navigation