Nonlinear Dynamics

, Volume 85, Issue 4, pp 2183–2206 | Cite as

Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems

  • Ammar Soukkou
  • Abdelkrim Boukabou
  • Salah Leulmi
Original Paper


In this paper, a fractional-order prediction-based feedback control scheme (Fo-PbFC) is proposed to stabilize the unstable equilibrium points and to synchronize the fractional-order chaotic systems (FoCS). The design of Fo-PbFC, derived and based on Lyapunov stabilization arguments and matrix measure, is theoretically rigorous and represents a powerful and simple approach to provide a reasonable trade-off between computational overhead, storage space, numerical accuracy and stability analysis in control and synchronization of a class of FoCS. Numerical simulations are also provided to verify the validity and the feasibility of the proposed scheme by considering the fractional-order Newton–Leipnik chaotic and the fractional-order Mathieu–Van Der Pol hyperchaotic systems as illustrative examples.


Fractional-order prediction-based controller Lyapunov stability Matrix measure Unstable equilibrium points Synchronization 


  1. 1.
    Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Control: Fundamentals and Applications. Advanced Industrial Control Series. Springer, London (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)MATHGoogle Scholar
  3. 3.
    Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers Series. Lecture Notes in Electrical Engineering. Springer Editions (2011)Google Scholar
  4. 4.
    Maione, G., Nigmatullin, R.R., Tenreiro Machado, J.A., Sabatier, J.: New challenges in fractional systems 2014. Math. Probl. Eng. (2015). doi: 10.1155/2015/870841
  5. 5.
    Arecchi, F.T., Boccaletti, S., Ciofini, M., Meucci, R., Grebogi, C.: The control of chaos: theoretical schemes and experimental realizations. Int. J. Bifurcat. Chaos. 8, 1643–1655 (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H.K., Maza, D.: The control of chaos: theory and application. Phys. Rep. 329, 103–197 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nozaki, R., Balthazar, J.M., Tusset, A.M., Pontes B.R., Jr., Bueno, A.M.: Nonlinear control system applied to atomic force microscope including parametric errors. J. Control Autom. Electr. Syst. 24, 223–231 (2013)Google Scholar
  8. 8.
    Tusset, A.M., Piccirillo, V., Bueno, A.M., Balthazar, J.M., Sado, D., Felix, J.L.P., Lopes Rebello, R.M.: Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control. 20, 1–17 (2015)Google Scholar
  9. 9.
    Balthazar, J.M., Tusset, A.M., Thomaz De Souza, S.L., Bueno, A.M.: Microcantilever chaotic motion suppression in tapping mode atomic force microscope. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 227(8), 1730–1741 (2013)CrossRefGoogle Scholar
  10. 10.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Beijing (2011)CrossRefMATHGoogle Scholar
  11. 11.
    Chen, D., Liu, Y.X., Ma, X.Y.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67, 893–901 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zhu, H., Zhou, S., Zhang, J.: Chaos and synchronization of the fractional-order Chua’s system. Chaos Soliton fract. 39, 1595–1603 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Sadeghian, H., Salarieh, H., Alasty, A., Meghdari, A.: On the control of chaos via fractional delayed feedback method. Comput. Math. Appl. 62, 1482–1491 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chen, L., He, Y., Chai, Y., Wu, R.: New results on stability and stabilization of a class on nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhang, R., Tian, G., Yang, S., Cao, H.: Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). ISA Trans. 56, 102–110 (2015)CrossRefGoogle Scholar
  16. 16.
    Wen, X.J., Wu, Z.M., Lu, J.G.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II Exp. Briefs 55(11), 1178–1182 (2008)CrossRefGoogle Scholar
  17. 17.
    Faieghi, M.R., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72, 301–309 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Li, Y., Li, J.: Stability analysis of fractional order systems based on T-S fuzzy model with the fractional order \(\alpha : 0< \quad \alpha \quad < 1\). Nonlinear Dyn. 78, 2909–2919 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Agrawal, S.K., Das, S.: Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method. J. Process Contr. 24, 517–530 (2014)CrossRefGoogle Scholar
  20. 20.
    Wang, C.H., Chen, C.Y.: Intelligent chaos synchronization of fractional-order systems via mean-based slide mode controller. Int. J. Fuzzy. Syst. 17(2), 144–157 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80, 249–267 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kuntanapreeda, S.: Tensor product model transformation based control and synchronization of a class of fractional-order chaotic systems. Asian J. Control. 17(2), 371–38 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Ding, D., Qi, D., Meng, Y., Xu, L.: Nonlinear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems. IET Control Theory A. 9(5), 681–690 (2014)CrossRefGoogle Scholar
  24. 24.
    Ding, D., Qi, D., Peng, J., Wang, Q.: Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance. Nonlinear Dyn. 81, 667–677 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chen, L., Wu, R., He, Y., Chai, Y.: Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dyn. 80, 51–58 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Xi, H., Yu, S., Zhang, R., Xu, L.: Adaptive impulsive synchronization for a class of fractional-orderchaotic and hyperchaotic. Optik 125, 2036–2040 (2014)CrossRefGoogle Scholar
  27. 27.
    Ushio, T., Yamamoto, S.: Prediction-based control of chaos. Phys. Lett. A. 264, 30–35 (1999)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A. 170(6), 421–428 (1992)CrossRefGoogle Scholar
  29. 29.
    Braverman, E., Liz, E.: On stabilization of equilibria using predictive control with and without pulses. Comput. Math. Appl. 64, 2192–2201 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Boukabou, A., Chebbah, A., Mansouri, N.: Predictive control of continuous chaotic systems. Int. J. Bifurc. Chaos 18(2), 587–592 (2008)CrossRefGoogle Scholar
  31. 31.
    Hadef, S., Boukabou, A.: Control of multi-scroll Chen system. J. Frankl. Inst. 351, 2728–2741 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wenxian, X., Zhen, L., Wenlong, W., Xiali, Z.: Controlling chaos for fractional-order Genesio–Tesi chaotic system using prediction-based feedback control. Int. J. Adv. Comput. Technol. 4(17), 280–287 (2012)Google Scholar
  33. 33.
    Zheng, Y.: Fuzzy prediction-based feedback control of fractional-order chaotic systems. Optik 126, 5645–5649 (2015)CrossRefGoogle Scholar
  34. 34.
    Oustaloup, A.: La Commande CRONE: Commande Robuste d’Ordre Non Entier. Editions Hermès, Paris (1991)Google Scholar
  35. 35.
    Oustaloup, A.: La Dérivation non entière. Hermès, Paris (1991)MATHGoogle Scholar
  36. 36.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  37. 37.
    Zhou, P., Ding, R.: Control and synchronization of the fractional-order Lorenz chaotic system via fractional-order derivative. Math. Probl. Eng. (2012). doi: 10.1155/2012/214169
  38. 38.
    Li, T., Wang, Y., Yang, Y.: Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller. Optik 125(22), 6700–6705 (2014)CrossRefGoogle Scholar
  39. 39.
    Si, G., Sun, Z., Zhang, Y., Chen, W.: Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Anal. Real World Appl. 13, 1761–1771 (2012)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Tavazoei, M.S., Haeri, M.: Stabilization of unstable fixed points of chaotic fractional-order systems by a state fractional PI controller. Eur. J. Control. 3, 247–257 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Li, R., Chen, W.: Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems. Nonlinear Dyn. 76, 785–795 (2014)Google Scholar
  42. 42.
    Jie, L., Xinjie, L., Junchan, Z.: Prediction-control based feedback control of a fractional order unified chaotic system. In: 2011 Chinese on Control and Decision Conference (CCDC), 2093–2097 (2011)Google Scholar
  43. 43.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  44. 44.
    Barbosa, R.S., Tenreiro Machado, J.A., Jesus, I.S.: Effect of fractional orders in the velocity control of a servo system. Comput. Math. Appl. 59, 1679–1686 (2010)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Ikeda, F.: A numerical algorithm of discrete fractional calculus byusing Inhomogeneous sampling data. Trans. Soc. Instrum. Control Eng. E–6(1), 1–8 (2007)Google Scholar
  46. 46.
    Sprouse, B.P., MacDonald, C.L., Silva, G.A.: Computational efficiency of fractional diffusion using adaptive time step memory. 4th IFAC Workshop on Fractional Differentiation and Its Applications (2010)Google Scholar
  47. 47.
    Gao, Z., Liao, X.: Discretization algorithm for fractional order integral by Haar wavelet approximation. Appl. Math. Comput. 218(5), 1917–1926 (2011)MathSciNetMATHGoogle Scholar
  48. 48.
    Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 62, 902–917 (2011)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1998)Google Scholar
  50. 50.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Demirci, E., Ozalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236, 2754–2762 (2012)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Vidyasagar, M.: On matrix measures and convex Lyapunov functions. J. Math. Anal. Appl. 62, 90–103 (1978)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Vidyasagar, M.: Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs (1993)MATHGoogle Scholar
  54. 54.
    He, W., Cao, J.: Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure. Chaos 19, 13–18 (2009)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Pan, L., Cao, J., Hu, J.: Synchronization for complex networks with Markov switching via matrix measure approach. Appl. Math. Modell. (2015). doi: 10.1016/j.apm.2015.01.027
  56. 56.
    He, W., Cao, J.: Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn. 55, 55–65 (2009)Google Scholar
  57. 57.
    Cao, J., Wan, Y.: Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Net. 53, 165–172 (2014)CrossRefMATHGoogle Scholar
  58. 58.
    Haddad, W.M., Chellaboina, V.S.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, Princeton (2007)MATHGoogle Scholar
  59. 59.
    Ostalczyk, P., Brzeziński, D.W., Duch, T., Łaski, M., Sankowsk, D.: The variable, fractional-order discrete-time PD controller in the IISv1.3 robot arm control. Cent. Eur. J. Phys. 11(6), 750–759 (2013)Google Scholar
  60. 60.
    Zhang, K., Wang, H., Fang, H.: Feedback control and hybrid projective synchronization of a fractional-order Newton–Leipnik system. Commun. Nonlinear Sci. Numer. Simulat. 17, 317–328 (2012)Google Scholar
  61. 61.
    Vishal, K., Agrawal, S.K., DAS, S.: Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu–van der Pol systems. Pramana J. Phys. 86(1), 59–75 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ammar Soukkou
    • 1
  • Abdelkrim Boukabou
    • 1
  • Salah Leulmi
    • 2
  1. 1.Department of ElectronicsJijel UniversityJijelAlgeria
  2. 2.Department of Electric Power EngineeringUniversity of August 20th, 1955SkikdaAlgeria

Personalised recommendations