Skip to main content
Log in

Robust finite-time control of fractional-order nonlinear systems via frequency distributed model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the application of frequency distributed model for finite-time control of a class of fractional-order nonlinear systems. Firstly, a class of fractional-order nonlinear systems with model uncertainties and external disturbances are introduced, and a new frequency distributed model with theoretical inference is presented. Secondly, a novel fast terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite-time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional-order nonlinear systems. Finally, two typical examples of three-dimensional nonlinear fractional-order Lorenz system and four-dimensional nonlinear fractional-order Chen system are employed to demonstrate the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peterson, M.R., Nayak, C.: Effects of landau level mixing on the fractional quantum hall effect in monolayer graphene. Phys. Rev. Lett. 113, 086401 (2014)

    Article  Google Scholar 

  2. Maione, G.: On the Laguerre rational approximation to fractional discrete derivative and integral operators. IEEE Trans. Autom. Control 58, 1579–1585 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, D.Y., Zhang, R.F., Liu, X.Z., Ma, X.Y.: Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 19, 4105–4121 (2014)

    Article  MathSciNet  Google Scholar 

  4. West, B.J.: Colloquium: fractional calculus view of complexity: a tutorial. Rev. Mod. Phys. 86, 1169–1184 (2014)

    Article  Google Scholar 

  5. Ghasemi, S., Tabesh, A., Askari-Marnani, J.: Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Trans. Energy Convers. 29, 780–787 (2014)

    Article  Google Scholar 

  6. Luo, S.K., Li, L.: Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn. 73, 639–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flores-Tlacuahuac, A., Biegler, L.T.: Optimization of fractional order dynamic chemical processing systems. Ind. Eng. Chem. Res. 53, 5110–5127 (2014)

    Article  Google Scholar 

  8. Lopes, A.M., Machado, J.A.T., Pinto, C.M.A., Galhano, A.M.S.F.: Fractional dynamics and MDS visualization of earthquake phenomena. Comput. Math. Appl. 66, 647–658 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ye, H., Michel, A.N., Hou, L.: Stability theory for hybrid dynamical systems. IEEE Trans. Autom. Control 43, 461–474 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guerra, T.M., Vermeiren, L.: LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. Automatica 40, 823–829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mahmoud, G.M., Aly, S.A., Al-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, X.S., Krstic, M.: Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary. Int. J. Robust Nonlinear Control 25, 222–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qin, W.Y., Jiao, X.D., Sun, T.: Synchronization and anti-synchronization of chaos for a multi-degree-of-freedom dynamical system by control of velocity. J. Vib. Control 20, 146–152 (2014)

    Article  MathSciNet  Google Scholar 

  15. Djennoune, S., Bettayeb, M.: Optimal synergetic control for fractional-order systems. Automatica 49, 2243–2249 (2013)

    Article  MathSciNet  Google Scholar 

  16. Chen, D.Y., Zhao, W.L., Sprott, J.C., Ma, X.Y.: Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, L., Ding, W., Liu, C.X., Ji, H.G., Cao, C.Q.: Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control. Nonlinear Dyn. 76, 2059–2071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Das, S., Pan, I., Das, S.: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time. ISA Trans. 52, 550–566 (2013)

    Article  Google Scholar 

  19. Wang, G.S., Xiao, J.W., Wang, Y.W., Yi, J.W.: Adaptive pinning cluster synchronization of fractional-order complex dynamical networks. Appl. Math. Comput. 231, 347–356 (2014)

    MathSciNet  Google Scholar 

  20. Rhouma, A., Bouani, F., Bouzouita, B., Ksouri, M.: Model predictive control of fractional order systems. J. Comput. Nonlinear Dyn. 9, 031011 (2014)

    Article  Google Scholar 

  21. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)

    Article  MATH  Google Scholar 

  22. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order differential systems. Comput. Math. Appl. 64, 3117–3140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Trigeassou, J.C., Maamri, N.: Initial conditions and initialization of linear fractional differential equations. Signal Process. 91, 427–436 (2011)

    Article  MATH  Google Scholar 

  24. Yuan, J., Shi, B., Ji, W.Q.: Adaptive sliding mode control of a novel class of fractional chaotic systems. Adv. Math. Phys. 2013 (2013). doi:10.1155/2013/576709

  25. Tian, X.M., Fei, S.M.: Robust control of a class of uncertain fractional-order chaotic systems with input nonlinearity via an adaptive sliding mode technique. Entropy 16, 729–746 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lan, Y.H., Gu, H.B., Chen, C.X., Zhou, Y., Luo, Y.P.: An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks. Neurocomputing 136, 235–242 (2014)

    Article  Google Scholar 

  27. Hong, Y.R., Huang, J., Xu, Y.S.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46, 305–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ou, M.Y., Du, H.B., Li, S.H.: Finite-time formation control of multiple nonholonomic mobile robots. Int. J. Robust Nonlinear Control 24, 140–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khoo, S., Xie, L.H., Zhao, S.K., Man, Z.H.: Multi-surface sliding control for fast finite-time leader-follower consensus with high order SISO uncertain nonlinear agents. Int. J. Robust Nonlinear Control 24, 2388–2404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, L., Zhang, Q.L., Li, J., Wang, G.L.: Robust finite-time H-infinity control for uncertain singular stochastic Markovian jump systems via proportional differential control law. IET Control Theory Appl. 8, 1625–1638 (2014)

    Article  MathSciNet  Google Scholar 

  31. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69, 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  33. Pisano, A., Rapaic, M.R., Usai, E., Jelicic, Z.D.: Continuous finite-time stabilization for some classes of fractional order dynamics. In: Proceedings of IEEE International Workshop on Variable Structure Systems, pp. 16–21 (2012)

  34. Curran, P.F., Chua, L.O.: Absolute stability theory and the synchronization problem. Int. J. Bifurc. Chaos 7, 1357–1382 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Yuan, L.X., Agrawal, O.P.: A numerical scheme for dynamic systems containing fractional derivatives. J. Vib. Acoust. Trans. ASME 124, 321–324 (2002)

    Article  Google Scholar 

  36. Aghababa, M.P.: Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J. Comput. Nonlinear Dyn. 7, 021010 (2012)

    Article  Google Scholar 

  37. Yu, S.H., Yu, X.H., Shirinzadeh, B., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Aghababa, M.P.: Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. Int. J. Control 86, 1744–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the scientific research foundation of the National Natural Science Foundation (Grant Numbers 51509210 and 51479173), the Science and Technology Project of Shaanxi Provincial Water Resources Department (Grant Number 2015slkj-11), the 111 Project from the Ministry of Education of China (No. B12007), Yangling Demonstration Zone Technology Project (2014NY-32).

Conflict of interest

The authors declare that the work is entirely ours and no parts of it are taken from other researchers. And there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ding, J., Wu, F. et al. Robust finite-time control of fractional-order nonlinear systems via frequency distributed model. Nonlinear Dyn 85, 2133–2142 (2016). https://doi.org/10.1007/s11071-016-2819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2819-9

Keywords

Navigation