Advertisement

Nonlinear Dynamics

, Volume 85, Issue 2, pp 1319–1329 | Cite as

Optical solitons of the coupled nonlinear Schrödinger’s equation with spatiotemporal dispersion

  • Mustafa Inc
  • Esma Ates
  • Fairouz Tchier
Original Paper

Abstract

In this work, the coupled nonlinear Schrödinger’s equation (CNLSE) is studied with four forms of nonlinearity. The nonlinearities that are considered in this paper are the Kerr law, power law, parabolic law and dual-power law. Jacobi elliptic function solutions and also bright and dark optical soliton solutions are obtained for each law of the CNLSE. We will acquire constraint conditions for the existence of obtained solitons.

Keywords

Solitons Jacobi elliptic functions Non-Kerr nonlinearity Optical couplers 

Notes

Acknowledgments

This research project was supported by a grant from the “Research Center of the Center for Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

References

  1. 1.
    Liang, P., Liang, J.: Jacobi elliptic function solutions to (1+ 1) dimensional nonlinear Schrödinger equation in management system. Optik 122, 1289–1292 (2011)Google Scholar
  2. 2.
    Miao, X., Zhang, Z.: The modified G’/G-expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 16, 4259–4267 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Biswas, A.: Theory of optical couplers. Opt. Quantum Electron. 35, 221–235 (2003)CrossRefGoogle Scholar
  4. 4.
    Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Topkara, E., Milovic, D., Sarma, A.K., Zerrad, E., Biswas, A.: Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 15, 2320–2330 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Wazwaz, A.M.: A study on linear and nonlinear Schrodinger equations by the variational iteration method. Chaos Solitons Fractals 37, 1136–1142 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Biswas, A., Milovic, D.: Optical solitons with log-law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 3763–3767 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ablowitz, M.J.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)CrossRefMATHGoogle Scholar
  10. 10.
    Eslami, M., Mirzazadeh, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83, 731–738 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrödinger’s equation. Nonlinear Dyn. 63, 623–626 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. Nonlinear Dyn. 81, 733–738 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jiang, Y., Tian, B., Li, M., Wang, P.: Bright hump solitons for the higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 74, 1053–1063 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami M.: Optical solitons with Biswas–Milovic equation by extended trial equation method. Nonlinear Dyn. (2016). doi: 10.1007/s11071-016-2613-8 (in press)
  15. 15.
    Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Science FacultyFırat UniversityElazigTurkey
  2. 2.Department of Electronics and Communication Engineering, Faculty of TechnologyKaradeniz Technical UniversityTrabzonTurkey
  3. 3.Department of MathematicsKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations