Nonlinear Dynamics

, Volume 85, Issue 2, pp 1281–1295 | Cite as

A novel nonlinear resilient control for a quadrotor UAV via backstepping control and nonlinear disturbance observer

  • Fuyang Chen
  • Wen Lei
  • Kangkang Zhang
  • Gang Tao
  • Bin Jiang
Original Paper


This study proposes a novel nonlinear resilient trajectory control for a quadrotor unmanned aerial vehicle (UAV) using backstepping control and nonlinear disturbance observer. First, a nonlinear dynamic model for the quadrotor UAV that considers external disturbances from wind model uncertainties is developed. A nonlinear disturbance observer is then constructed separately from the controller to estimate the external disturbances and compensate for the negative effects of the disturbances. Based on the estimates from the given observer, a nominal nonlinear backstepping trajectory-tracking position controller is designed to stabilize the subsystems step by step until the ultimate control law is obtained. An extra term is added to the nominal controller to address the problem of actuator effectiveness loss and to ensure system resilience. The stability of the resilient controller is analyzed using Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed nonlinear resilient controller.


Quadrotor UAV Nonlinear disturbance observer Resilient control Disturbance compensation Backstepping controller 



The project was supported by the Aeronautics Science Foundation of China (2014ZC52033) and the National Natural Science Foundation of China (61533009, 61374130, 61473146), a project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions.


  1. 1.
    Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. Control Syst. Technol. IEEE Trans. 14(3), 562–571 (2006)CrossRefGoogle Scholar
  2. 2.
    Zuo, Z.: Trajectory tracking control design with command-filtered compensation for a quadrotor. Control Theory Appl. IET 4(11), 2343–2355 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pounds, P.E.I., Bersak, D.R., Dollar, A.M.: Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton. Robots 33(1–2), 129–142 (2012)CrossRefGoogle Scholar
  4. 4.
    Mokhtari, A., Benallegue, A., Orlov, Y.: Exact linearization and sliding mode observer for a quadrotor unmanned aerial vehicle. Int. J. Robot. Autom. 21(1), 39–49 (2006)Google Scholar
  5. 5.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor control: attitude, altitude and position experimental studies. Control Theory Appl. IET 6(12), 1812–1827 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56(1–2), 127–151 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Madani, T., Benallegue, A.: Backstepping sliding mode control applied to a miniature quadrotor flying robot. In: IEEE Industrial Electronics, IECON 2006-32nd annual conference on. IEEE, pp. 700–705 (2006)Google Scholar
  8. 8.
    Rong, X., Umit, O.: Sliding mode control of a quadrotor helicopter. In: Proceedings of the 45th IEEE conference on decision and control, pp. 4957–4962 (2006)Google Scholar
  9. 9.
    Tao, W., Wenfang, X., Youmin, Z.: Sliding mode reconfigurable control using information on the control effectiveness of actuators. J. Aerosp. Eng. 27(3), 587–596 (2014)CrossRefGoogle Scholar
  10. 10.
    Ryan, T., Kim, H.J.: LMI-based gain synthesis for simple robust quadrotor control. Autom. Sci. Eng. IEEE Trans. 10(4), 1173–1178 (2013)CrossRefGoogle Scholar
  11. 11.
    Besnard, L., Shtessel, Y.B., Landrum, B.: Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J. Frankl. Inst. 349(2), 658–684 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lee, K., Back, J., Choy, I.: Nonlinear disturbance observer based robust attitude tracking controller for quadrotor UAVs. Int. J. Control Autom. Syst. 12(6), 1266–1275 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Shirinzadeh, B., Ang, M.H.: Nonlinear double-integral observer and application to quadrotor aircraft. Ind. Electron. IEEE Trans. 62(2), 1189–1200 (2015)CrossRefGoogle Scholar
  14. 14.
    Pan, Y., Yu, H.: Composite learning from adaptive dynamic surface control. Automatic Control IEEE Trans. doi: 10.1109/TAC.2015.2495232 (2015)
  15. 15.
    Islam, S., Liu, P.X., El Saddik, A.: Nonlinear adaptive control for quadrotor flying vehicle. Nonlinear Dyn. 78(1), 117–133 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Cabecinhas, D., Cunha, R., Silvestre, C.: A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control Eng. Pract. 26, 1–10 (2014)CrossRefGoogle Scholar
  17. 17.
    Pan, Y., Yu, H.: Dynamic surface control via singular perturbation analysis. Automatica 57, 29–33 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2563–2575 (2015)Google Scholar
  19. 19.
    Lee, T.: Robust adaptive attitude tracking on with an application to a quadrotor UAV. Control Syst. Technol. IEEE Trans. 21(5), 1924–1930 (2013)Google Scholar
  20. 20.
    Liu, H., Bai, Y., Lu, G.: Robust tracking control of a quadrotor helicopter. J. Intell. Robot. Syst. 75(3–4), 595–608 (2014)CrossRefGoogle Scholar
  21. 21.
    Chamseddine, A., Theilliol, D., Zhang, Y.M.: Active fault tolerant control system design with trajectory replanning against actuator faults and saturation: Application to a quadrotor unmanned aerial vehicle. Int. J. Adapt. Control Signal Process. 29(1), 1–23 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Islam, S., Liu, P.X., El Saddik, A.: Robust control of four rotor unmanned aerial vehicles with disturbance uncertainty. Ind. Electron. IEEE Trans. 62(3), 1563–1571 (2014)CrossRefGoogle Scholar
  23. 23.
    Isidori, A., Astolfi, A.: Disturbance attenuation and \(\text{ H }\infty \)-control via measurement feedback in nonlinear systems. Automatic Control IEEE Trans. 37(9), 1283–1293 (1992)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Chen, W.H.: Disturbance observer based control for nonlinear systems. Mechatron. IEEE/ASME Trans. 9(4), 706–710 (2004)CrossRefGoogle Scholar
  25. 25.
    Guo, Lei, Chen, WenHua: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109–125 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Chen, Y.D., Tung, P.C., Fuh, C.C.: Robust disturbance rejection method for uncertain system with disturbances of unknown frequencies. Nonlinear Dyn. 55(4), 329–336 (2009)CrossRefMATHGoogle Scholar
  27. 27.
    Zhu, E., Pang, J., Sun, N.: Airship horizontal trajectory tracking control based on Active Disturbance Rejection Control (ADRC). Nonlinear Dyn. 75(4), 725–734 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Ann. Rev. Control 32(2), 229–252 (2008)CrossRefGoogle Scholar
  29. 29.
    Ji, K., Wei, D.: Resilient control for wireless networked control systems. Int. J. Control Autom. Syst. 9(2), 285–293 (2011)CrossRefGoogle Scholar
  30. 30.
    Zhu, M., Martinez, S.: On the performance analysis of resilient networked control systems under replay attacks. Autom. Control IEEE Trans. 59(3), 804–808 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Isidori, A.: Nonlinear Control Systems. Springer, New York (1995)CrossRefMATHGoogle Scholar
  32. 32.
    Cabecinhas, D., Cunha, R., Silvestre, C.: A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control Eng. Pract. 26(2), 1–10 (2014)CrossRefGoogle Scholar
  33. 33.
    Zhao, D., Li, S., Zhu, Q., et al.: Robust finite-time control approach for robotic manipulators. IET Control Theory Appl. 4(1), 1–15 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yan, X.G., Spurgeon, S.K., Edwards, C.: Memoryless static output feedback sliding mode control for nonlinear systems with delayed disturbances. Automatic Control IEEE Trans. 59(7), 1906–1912 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Benosman, M., Lum, K.Y.: Passive actuators’ fault-tolerant control for affine nonlinear systems. Control Syst. Technol. IEEE Trans. 18(1), 152–163 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Fuyang Chen
    • 1
  • Wen Lei
    • 1
  • Kangkang Zhang
    • 1
  • Gang Tao
    • 2
  • Bin Jiang
    • 1
  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations