Nonlinear Dynamics

, Volume 85, Issue 2, pp 739–750 | Cite as

Nonlinear analysis of a 2-DOF piecewise linear aeroelastic system

  • Tamás Kalmár-Nagy
  • Rudolf Csikja
  • Tarek A. Elgohary
Original Paper


We study the dynamics of a two- degree-of-freedom (pitch and plunge) aeroelastic system where the aerodynamic forces are modeled as a piecewise linear function of the effective angle of attack. Stability and bifurcations of equilibria are analyzed. We find border collision and rapid bifurcations. Bifurcation diagrams of the system were calculated utilizing MATCONT and Mathematica. Chaotic behavior with intermittent switches about the two nontrivial equilibria was also observed.


Aeroelasticity Piecewise linear system Limit cycle oscillation Bifurcation Hybrid system Chaos 



The authors are grateful to the reviewers whose suggestions helped to improve the paper. This research was partially supported by OTKA-84060. This research was partially supported by the Hungarian Scientific Research Fund OTKA-84060.


  1. 1.
    Abdelkefi, A., Vasconcellos, R., Nayfeh, A.H., Hajj, M.R.: An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn. 71(1–2), 159–173 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alighanbari, H., Hashemi, S.: Derivation of odes and bifurcation analysis of a two-dof airfoil subjected to unsteady incompressible flow. Int. J. Aerosp. Eng. (2009)Google Scholar
  3. 3.
    Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon Press Ltd, New York (1966)MATHGoogle Scholar
  4. 4.
    Antali, M., Stepan, G.: Discontinuity-induced bifurcations of a dual-point contact ball. Nonlinear Dyn. pp. 1–18 (2015)Google Scholar
  5. 5.
    Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 2. Springer, London (2008)MATHGoogle Scholar
  6. 6.
    Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dowell, E., Edwards, J., Strganac, T.W.: Nonlinear aeroelasticity. J. Aircr. 40(5), 857–874 (2003)CrossRefGoogle Scholar
  8. 8.
    Elgohary, T.: Nonlinear Analysis of a Two DOF Piecewise Linear Aeroelastic System. Master’s thesis, Texas A&M University (2010)Google Scholar
  9. 9.
    Freire, E., Ponce, E., Ros, J.: Limit cycle bifurcation from center in symmetric piecewise-linear systems. Int. J. Bifurcation Chaos 9(5), 895–907 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea Publishing Company, New York (1959)MATHGoogle Scholar
  11. 11.
    Gilliatt, H.C., Strganac, T.W., Kurdila, A.J.: Nonlinear aeroelastic response of an airfoil. In: Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. AIAA 97-459, Reno, NV (1997)Google Scholar
  12. 12.
    Gilliatt, H.C., Strganac, T.W., Kurdila, A.J.: An investigation of internal resonance in aeroelastic systems. Nonlinear Dyn. 31, 1–22 (2003)CrossRefMATHGoogle Scholar
  13. 13.
    Hayashi, H., Ishizuka, S., Hirakawa, K.: Transition to chaos via intermittency in the onchidium pacemaker neuron. Phys. Lett. A 98(8–9), 474–476 (1983)CrossRefGoogle Scholar
  14. 14.
    Hilborn, R.C.: Chaos and Nonlinear Dynamics : An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Jeffries, C., Perez, J.: Observation of a pomeau-manneville intermittent route to chaos in a nonlinear oscillator. Phys. Rev. A 26(4), 2117–2122 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kalmár-Nagy, T., Wahi, P., Halder, A.: Dynamics of a hysteretic relay oscillator with periodic forcing. SIAM J. Appl. Dyn. Syst. 10, 403–422 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kriegsmann, G.: The rapid bifurcation of the Wien bridge oscillator. IEEE Trans. Circuits Syst. 34(9), 1093–1096 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lee, B.H.K., Price, S.J., Wong, Y.S.: Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Prog. Aerosp. Sci. 35(3), 205–334 (1999)CrossRefGoogle Scholar
  19. 19.
    Leine, R.I.: Bifurcations of equilibria in non-smooth continuous systems. Phys. D-Nonlinear Phenom. 223, 121–137 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn. 82(3), 1159–1175 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Magri, L., Galvanetto, U.: Example of a non-smooth hopf bifurcation in an aero-elastic system. Mech. Res. Commun. 40, 26–33 (2012)CrossRefGoogle Scholar
  22. 22.
    Mahfouz, I.A., Badrakhan, F.: Chaotic behavior of some piecewise-linear systems.1. Systems with set-up spring or with unsymmetric elasticity. J. Sound Vib. 143, 255–288 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mahfouz, I.A., Badrakhan, F.: Chaotic behavior of some piecewise-linear systems. 2. Systems with clearance. J. Sound Vib. 143, 289–328 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Makarenkov, O., Lamb, J.S.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D 241(22), 1826–1844 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    O’Neil, T., Gilliatt, H.C., Strganac, T.W.: Investigations of aeroelastic response for a system with continuous structural nonlinearities. In: Proceedings of the 37th Structures, Structural Dynamics and Materials Conference. AIAA 96-1390, Salt Lake City, UT (1996)Google Scholar
  26. 26.
    O’Neil, T., Strganac, T.W.: Aeroelastic response of a rigid wing supported by nonlinear springs. J. Aircr. 35, 616–622 (1998)CrossRefGoogle Scholar
  27. 27.
    Pratap, R., Mukherjee, S., Moon, F.C.: Dynamic behavior of a bilinear hysteretic elastoplastic oscillator 1. Free oscillations. J. Sound Vib. 172, 321–337 (1994)CrossRefMATHGoogle Scholar
  28. 28.
    Pratap, R., Mukherjee, S., Moon, F.C.: Dynamic behavior of a bilinear hysteretic elastoplastic oscillator. 2. Oscillations under periodic impulse forcing. J. Sound Vib. 172, 339–358 (1994)CrossRefMATHGoogle Scholar
  29. 29.
    Price, S.J., Alighanbari, H., Lee, B.H.K.: The aeroelastic response of a 2-dimensional airfoil with bilinear and cubic structural nonlinearities. J. Fluids Struct. 9, 175–193 (1995)CrossRefGoogle Scholar
  30. 30.
    Roberts, I., Jones, D., Lieven, N., Di Bernado, M., Champneys, A.: Analysis of piecewise linear aeroelastic systems using numerical continuation. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 216(1), 1–11 (2002)CrossRefGoogle Scholar
  31. 31.
    Seiranyan, A.P.: Collision of eigenvalues in linear oscillatory systems. J. Appl. Math. Mech. 58, 805–813 (1994)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear-oscillator. J. Sound Vib. 90, 129–155 (1983)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sheldahl, R.E., Klimas, P.C.: Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Tech. rep., Sandia National Laboratories. SAND80-2114 (1981)Google Scholar
  34. 34.
    Tang, D.M., Dowell, E.H.: Flutter and stall response of a helicopter blade with structural nonlinearity. J. Aircr. 29, 953–960 (1992)CrossRefGoogle Scholar
  35. 35.
    Tang, D.M., Dowell, E.H.: Comparison of theory and experiment for nonlinear flutter and stall response of a helicopter blade. J. Sound Vib. 165, 953–960 (1993)CrossRefGoogle Scholar
  36. 36.
    Thota, P., Dankowicz, H.: Tc-hat (tc): a novel toolbox for the continuation of periodic trajectories in hybrid dynamical systems. SIAM J. Appl. Dyn. Syst. 7(4), 1283–1322 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Ueda, T., Dowell, E.H.: Flutter analysis using nonlinear aerodynamic forces. J. Aircr. 21, 101–109 (1984)Google Scholar
  38. 38.
    Vieth, E.: Fitting piecewise linear regression functions to biological responses. J. Appl. Physiol. 67(1), 390–396 (1989)Google Scholar
  39. 39.
    Woolston, D.S., Runyan, H.L., Andrews, R.E.: An investigation of effects of certain types of structural nonlinearities on wing and control surface flutter. J. Aeronaut. Sci. 24, 57–63 (1957)CrossRefGoogle Scholar
  40. 40.
    Yeh, W.J., Kao, Y.H.: Universal scaling and chaotic behavior of a josephson-junction analog. Phys. Rev. Lett. 49(26), 1888–1891 (1982)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhusubaliyev, Z.T., Mosekilde, E.: Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, River Edge (2003)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Fluid Mechanics, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Mathematics Institute, Faculty of Natural SciencesBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Aerospace Engineering DepartmentTexas A&M UniversityCollege StationUSA

Personalised recommendations