Skip to main content
Log in

Exact solution of certain time fractional nonlinear partial differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Given a time fractional nonlinear partial differential equation, we show how to derive its exact solution using invariant subspace method. This has been illustrated through time fractional diffusion convection equation, time fractional nonlinear dispersive Boussinesq equation, time fractional reaction diffusion equation of second order, time fractional thin-film equation, and time fractional quadratic wave equation. Also, we explicitly shown that time fractional nonlinear partial differential equations admit more than one invariant subspaces which in turn helps to derive more than one exact solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Acadmic Press, New York (1999)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach science, Yverdon (1993)

    MATH  Google Scholar 

  4. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  5. Kilbas, A.A., Trujillo, J.J., Srivastava, H.M.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  6. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  7. He, J.H.: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 15, 86–90 (1999)

    Google Scholar 

  8. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81, 1023–1052 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms (2015). doi:10.1007/s11075-015-0087-2

  11. Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics: Integrability, Chaos, and Patterns. Springer, India (2003)

    Book  MATH  Google Scholar 

  12. Daftardar-Gejji, V., Jafari, H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301, 508–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bakkyaraj, T., Sahadevan, R.: An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method. J. Fract. Calc. Appl. 5, 37–52 (2014)

    MathSciNet  Google Scholar 

  14. Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Applications of first integral method to fractional partial differential equations. Indian J. Phys. 88, 177–184 (2014)

    Article  Google Scholar 

  15. Bakkyaraj, T., Sahadevan, R.: Approximate analytical solution of two coupled time fractional nonlinear Schrodinger equations. Int. J. Appl. Comput. Math. 2, 113–135 (2016)

  16. Bakkyaraj, T., Sahadevan, R.: On solutions of two coupled fractional time derivative Hirota equations. Nonlinear Dyn. 77, 1309–1322 (2014)

    Article  MathSciNet  Google Scholar 

  17. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 2, 341–347 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ouhadan, A., El Kinani, E.H.: Lie symmetry analysis of some time fractional partial differential equations. Int. J. Modern Phys. Conf. Ser. 38, 1560075(8p) (2015)

  19. Bakkyaraj, T., Sahadevan, R.: Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville derivative. Nonlinear Dyn. 80, 447–455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26, 25–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59(5–6), 433–442 (2014)

    Google Scholar 

  22. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Numerical solution of the two-sided space and time fractional telegraph equation via Chebyshev tau approximation. J. Optim. Theory Appl. (2016) doi:10.1007/s10957-016-0863-8

  23. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Efficient legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation. J. Vib. Cont. (2015). doi:10.1177/1077546314566835

  24. Bhrawy, A.H., Ezz-Eldien, S.S.: A New Legendre operational technique for delay fractional optimal control problems. Calcolo (2015). doi:10.1007/s10092-015-0160-1

  25. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x

  26. Bhrawy, A.H., Doha, E.H., Machado, J.A.T., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control (2016). doi:10.1002/asjc.1109

  27. Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation. Numer. Algorithms 71, 151–180 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrdinger equations. Nonlinear Dyn. (2016). doi:10.1007/s11071-015-2588-x

  29. Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC, London (2007)

    MATH  Google Scholar 

  30. Galaktionov, V.A.: Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 125, pp. 225–246 (1995)

  31. Svirshchevskii, S.R.: Invariant linear spaces and exact solutions of nonlinear evolution equations. J. Nonlinear Math. Phys. 3, 164–169 (1996)

    Article  MathSciNet  Google Scholar 

  32. Gazizov, R.K., Kasatkin, A.A.: Construction of exact solutions for fractional order differential equations by invariant subspace method. Comput. Math. Appl. 66, 576–584 (2013)

    Article  MathSciNet  Google Scholar 

  33. Sahadevan, R., Bakkyaraj, T.: Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations. Fract. Calc. Appl. Anal. 18, 146–162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Harris, P.A., Garra, R.: Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method. Nonlinear Stud. 20(4), 471–481 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Harris, P.A., Garra, R.: Nonlinear time-fractional dispersive equations. Commun. Appl. Indus. Math. 6, 1 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Ouhadan, A., El Kinani, E.H.: Invariant subspace method and fractional modified Kuramoto–Sivashinsky equation. arXiv:1503.08789v1 (2015)

  37. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  38. Debnath, L., Bhatta, D.: Integral Transforms and Their Applications, 2nd edn. Chapman and Hall/CRC, London (2009)

    MATH  Google Scholar 

  39. Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, New York (2010)

    MATH  Google Scholar 

  40. Sakar, M.G., Erdogan, F.: The homotopy analysis method for solving the time-fractional Fornberg–Whitham equation and comparison with Adomian’s decomposition method. Appl. Math. Model. 37, 8876–8885 (2013)

  41. Gupta, P.K., Singh, M.: Homotopy perturbation method for fractional Fornberg–Whitham equation. Comput. Math. Appl. 61, 250–254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees for their constructive suggestions. One of the authors (P.P) would like to thank the University Grants Commission, New Delhi, for providing financial support in the form of Project fellow through Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sahadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahadevan, R., Prakash, P. Exact solution of certain time fractional nonlinear partial differential equations. Nonlinear Dyn 85, 659–673 (2016). https://doi.org/10.1007/s11071-016-2714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2714-4

Keywords

Navigation