Advertisement

Nonlinear Dynamics

, Volume 85, Issue 1, pp 317–331 | Cite as

Extended-state-observer-based finite-time synchronization control design of teleoperation with experimental validation

  • Changchun Hua
  • Jing Li
  • Yana Yang
  • Xinping Guan
Original Paper

Abstract

Finite-time synchronization control means that system synchronization performance is achieved in finite time. Compared with the general control schemes, finite-time control can guarantee faster convergence rate and higher convergence precision. This paper investigates the finite-time synchronization control problem of networked teleoperation system with time delay. A nonsingular fast terminal sliding mode (NFTSM)-based finite-time control scheme is designed without requiring the information of time delay to achieve the master–slave synchronization in finite time. Considering the system uncertainties and external disturbances, the extended-state-observer (ESO) is applied. ESO is a nonmodel control approach and can estimate the lumped internal nonlinear dynamics and the external disturbances with arbitrarily high accuracy by choosing proper parameters. The stability and synchronization performance are proved by employing proper Lyapunov functions with the new controllers. Furthermore, the reaching time and the sliding time can be computed exactly only with system parameters and controller parameters. Finally, the experiments are conducted. Comparison with P+d control is presented to show the superior performance of the NFTSM+ESO control strategy on Phantom Premium 1.5HF robots (SensAble Technologies, Inc.).

Keywords

Teleoperation Finite time Extended-state-observer Uncertainties Time delay 

Notes

Acknowledgments

This paper was supported in part by the Hundred Excellent Innovation Talents Support Program of Hebei Province, in part by the Doctoral Fund of Ministry of Education of China under Grant 20121333110008, in part by the Hebei Province Applied Basis Research Project under Grant 13961806D, in part by the Top Talents Project of Hebei Province, and in part by the National Natural Science Foundation of China under Grant 61290322, Grant 61273222, Grant 61322303, Grant 61473248 and Grant 61573301.

References

  1. 1.
    Chopra, N., Spong, M.W., Lozano, R.: Synchronization of bilateral teleoperators with time delay. Automatica 44(8), 2142–2148 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Nuño, E., Ortega, R., Barabanov, N., Basanez, L.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)CrossRefGoogle Scholar
  3. 3.
    Hua, C.C., Liu, X.P.: Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Trans. Robot. 26(5), 925–932 (2010)CrossRefGoogle Scholar
  4. 4.
    Islam, S., Liu, X.P., Saddik, AEl: Teleoperation systems with symmetric and unsymmetric time varying communication delay. IEEE Trans. Instrum. Meas. 62(11), 2943–2953 (2013)CrossRefGoogle Scholar
  5. 5.
    Islam, S., Liu, X.P., Saddik, AEl: New stability and tracking criteria for a class of bilateral teleoperation systems. Inf. Sci. 278, 868–882 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Islam, S., Liu, X.P., Saddik, AEl: Nonlinear adaptive control for quadrotor flying vehicle. Nonlinear Dyn. 78(1), 117–133 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Alfi, A.R., Farrokhi, M.: Force reflecting bilateral control of master–slave systems in teleoperation. J. Intell. Robot. Syst. 52(2), 209–232 (2008)CrossRefGoogle Scholar
  8. 8.
    Khosravi, A., Alfi, A.R., Roshandel, A.: Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach. J. AI Data Min. 1(2), 75–87 (2013)Google Scholar
  9. 9.
    Shokri-Ghaleh, H., Alfi, A.R.: A comparison between optimization algorithms applied to synchronization of bilateral teleoperation systems against time delay and modeling uncertainties. Appl. Soft Comput. 24, 447–456 (2014)CrossRefGoogle Scholar
  10. 10.
    Islam, S., Liu, X.P., Saddik, AEl: Nonlinear control for teleoperation systems with time varying delay. Nonlinear Dyn. 76(2), 931–954 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Tan, K.K., Huang, S., Lee, T.H.: Decentralized adaptive controller design of large-scale uncertain robotic systems. Automatica 45(1), 161–166 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Li, Z.J., Xia, Y.Q.: Adaptive neural network control of bilateral teleoperation with unsymmetrical stochastic delays and unmodeled dynamics. Int. J. Robust Nonlinear Control 21(11), 1628–1652 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Li, Z.J., Cao, X.Q., Ding, N.: Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans. Fuzzy Syst. 19(4), 745–757 (2011)CrossRefGoogle Scholar
  14. 14.
    Sarras, I., Nuño, E., Basañez, L.: An adaptive controller for nonlinear teleoperators with variable time-delays. J. Franklin Inst. 351(10), 4817–4837 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Han, J.Q.: A class of extended state observers for uncertain systems. Control Decis. 10(1), 85–88 (1995)Google Scholar
  16. 16.
    Huang, Y., Luo, Z.W., Svinin, M., Odashima, T., Hosoe, S.: Extended state observer based technique for control of robot systems. In: Proceeding of the 4th World Congress on Intelligent Control and Automation vol. 4, pp. 2807–2811 (2002)Google Scholar
  17. 17.
    Mahawan, B., Li, Z.H., Han, J.Q., Shin-ichi, N.: High-speed high-precision motion control of robots using extended state observer. J. Robot. Soc. Jpn. 18(2), 86–93 (2000)CrossRefGoogle Scholar
  18. 18.
    Li, S.L., Yang, X., Yang, D.: Active disturbance rejection control for high pointing accuracy and rotation speed. Automatica 45(8), 1854–1860 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Li, S.H., Xia, C.J., Zhou, X.: Disturbance rejection control method for permanent magnet synchronous motor speed-regulation system. Mechatronics 22(6), 706–714 (2012)CrossRefGoogle Scholar
  20. 20.
    Liu, H.X., Li, S.H.: Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans. Ind. Electron. 59(2), 1171–1183 (2012)CrossRefGoogle Scholar
  21. 21.
    Shi, X.X., Chang, S.Q.: Extended state observer-based time-optimal control for fast and precise point-to-point motions driven by a novel electromagnetic linear actuator. Mechatronics 23(4), 445–451 (2013)CrossRefGoogle Scholar
  22. 22.
    Talole, S.E., Kolhe, J.P., Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2010)CrossRefGoogle Scholar
  23. 23.
    Sun, B.S., Gao, Z.Q.: A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC–DC power converter. IEEE Trans. Ind. Electron. 52(5), 1271–1277 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zheng, Q., Dong, L.L., Lee, D.H., Gao, Z.Q.: Active disturbance rejection control for MEMS gyroscopes. In: Proceedings of the American Control Conference, pp. 4425–4430 (2008)Google Scholar
  25. 25.
    Huang, Y., Xu, K.K., Han, J.Q., Lam, J.: Flight control design using extended state observer and non-smooth feedback. In: Proceeding of the IEEE Conference on Decision and Control, vol. 1, pp. 223–228 (2001)Google Scholar
  26. 26.
    Man, Z.H., Paplinski, A.P., Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Tang, Y.: Terminal sliding mode control for rigid robots. Automatica 34(1), 51–56 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)CrossRefGoogle Scholar
  29. 29.
    Bartolini, G., Pisano, A., Punta, E., Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control 76(9–10), 875–892 (2003)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Venkataraman, S.T., Gulati, S.: Control of nonlinear systems using terminal sliding modes. J. Dyn. Syst. Meas. Control 115(3), 554–560 (1993)CrossRefMATHGoogle Scholar
  31. 31.
    Feng, Y., Yu, X.H., Man, Z.H.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38, 2159–2167 (2002)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Yu, S.H., Yu, X.H., Shirinzadeh, B.J., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Wang, L.Y., Chai, T.Y., Zhai, L.F.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)CrossRefGoogle Scholar
  34. 34.
    Zou, A.M., Kumar, K.D., Hou, Z.G., Liu, X.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(4), 950–963 (2011)Google Scholar
  35. 35.
    Yang, Y.N., Hua, C.C., Guan, X.P.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans. Fuzzy Syst. 22(3), 631–641 (2014)Google Scholar
  36. 36.
    Kelly, R., Davila, V.S., Perez, J.A.L.: Control of Robot Manipulators in Joint Space. Springer, New York (2006)Google Scholar
  37. 37.
    Zuo, Z.Y.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Wang, W.W., Gao, Z.Q.: A comparison study of advanced state observer design techniques. In: Proceedings of the American Control Conference vol. 6, pp. 4754–4759 (2003)Google Scholar
  39. 39.
    Zheng, Z., Xia, Y.Q., Fu, M.Y., Wang, S.: Attitude tracking of rigid spacecraft based on extended state observer. In: IEEE International Symposium on Systems and Control in Aeronautics and Astronautics, pp. 621–626 (2010)Google Scholar
  40. 40.
    Yao, J.Y., Jiao, Z.X., Ma, D.W.: Adaptive robust control of DC motors with extended state observer. IEEE Trans. Ind. Electron. 61(7), 3630–3637 (2014)CrossRefGoogle Scholar
  41. 41.
    Gao, Z.Q.: Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American Control Conference vol. 6, pp. 4989–4996 (2006)Google Scholar
  42. 42.
    Xia, Y.Q., Shi, P., Liu, G.P., Rees, D., Han, J.Q.: Active disturbance rejection control for uncertain multivariable systems with time-delay. IET Control Theory Appl. 1(1), 75–81 (2007)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Han, J.Q., Zhang, R.: Error analysis of the second order ESO. J. Syst. Sci. Math. Sci. 19(4), 465–471 (1999)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Changchun Hua
    • 1
  • Jing Li
    • 1
  • Yana Yang
    • 1
  • Xinping Guan
    • 2
  1. 1.Institute of Electrical EngineeringYanshan UniversityQinhuangdao CityChina
  2. 2.Shanghai Jiaotong UniversityShanghai CityChina

Personalised recommendations