Advertisement

Nonlinear Dynamics

, Volume 84, Issue 4, pp 2505–2515 | Cite as

Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach

  • Suwat Kuntanapreeda
Original Paper

Abstract

Feedback passivity-based controller design for stabilization of fractional-order unified chaotic systems is proposed in this paper. Although feedback passivity-based control is a well-known method for integer-order systems, it has not been investigated for fractional-order systems due to a lack of suited mathematical results. In this paper, a recently established lemma for the Caputo fractional derivative of a quadratic function is utilized to facilitate the design. An adaptive mechanism is also employed such that the controller does not need to known the parameter of the systems. Moreover, based on a fractional-order extension of the Lyapunov direct method, the stability of the zero dynamics of the systems is also provided. Numerical simulations are performed to illustrate the effectiveness of the proposed design. The results show that the controller is able to effectively stabilize the chaotic behavior without the knowledge of the system parameter. In addition, it is also found that the transient dynamics of the controlled system and the control effort are markedly influenced by the fractional order of the system.

Keywords

Chaos control Fractional-order system Unified chaotic system Adaptive control Passivity-based control 

References

  1. 1.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1971)MATHGoogle Scholar
  2. 2.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  3. 3.
    Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)CrossRefMATHGoogle Scholar
  4. 4.
    Petráš, I.: Fractional-Order Nonlinear Systems. Springer, Berlin (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15, 939–945 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Drapaca, C.S., Sivaloganathan, S.: A fractional model of continuum mechanics. J. Elast. 107, 105–123 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  9. 9.
    Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)CrossRefGoogle Scholar
  10. 10.
    Ott, E.F., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, G., Ueta, T.: Bifurcation analysis of Chen’s equation. Int. J. Bifurcat. Chaos 10, 1917–1931 (2000)MathSciNetMATHGoogle Scholar
  12. 12.
    Lü, J., Chen, G., Cheng, D., Čelikovsky̌, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurcat. Chaos 12, 2917–2926 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)CrossRefMATHGoogle Scholar
  14. 14.
    Hoppensteadt, F.C.: Analysis and Simulation of Chaotic Systems. Springer, New York (2000)MATHGoogle Scholar
  15. 15.
    Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equation. Phys. A 341, 55–61 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wu, X., Li, J., Chen, G.: Chaos in the fractional order unified system and its synchronization. J. Frankin Inst. 345, 392–401 (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Deng, W., Li, C.: The evolution of chaotic dynamics for fractional unified system. Phys. Lett. A 372, 401–407 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yu, Y., Li, H.-X., Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Soliton Fract. 42, 1181–1189 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sun, K., Wang, X., Sprott, J.C.: Bifurcation and chaos in fractional-order simplified Lorenz system. Int. J. Bifurcat. Chaos 20, 1209–1219 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Xu, Y., Gu, R., Zhang, H., Li, D.: Chaos in diffusionless Lorenz system with a fractional order and its control. Int. J. Bifurcat. Chaos 22, 1250088 (2012). (8 pages) CrossRefMATHGoogle Scholar
  21. 21.
    Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18, 1193–1202 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hao, J., Xiong, X., Bin, H., Sun, N.: Controlling chaos for fractional order loss type of coupled dynamos systems via feedback. Int. J. Bifurcat. Chaos 25, 1550111 (2015). (9 pages) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Shahiri, M., Ghaderi, R., Ranjbar, A.N., Hosseinnia, S.H., Momani, S.: Chaotic fractional-order Coullet system: synchronization and control approach. Commun. Nonlinear Sci. Numer. Simul. 15, 665–674 (2010)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Razminia, A., Majd, V., Baleanu, D.: Chaotic incommensurate fractional order Rössler system: active control and synchronization. Adv. Differ. Equ. 2011, 15 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Danca, M., Garrappa, R.: Suppressing chaos in discontinuous systems of fractional order by active control. Appl. Math. Comput. 257, 89–102 (2015)MathSciNetGoogle Scholar
  26. 26.
    Faieghi, M.R., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72, 301–309 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Faieghi, M.R., Kuntanapreeda, S., Delavari, H., Baleanu, D.: Robust stabilization of fractional-order chaotic systems with linear controllers: LMI-based sufficient conditions. J. Vib. Control 20, 1042–1051 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chen, D., Liu, Y., Ma, X., Zhang, R.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67, 893–901 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Yin, C., Zhong, S., Chen, W.: Design of sliding mode controller for a class of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17, 356–366 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Byrnes, C.I., Isidori, A., Willems, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Contr. 36, 1228–1240 (1991)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (2002)MATHGoogle Scholar
  32. 32.
    Kemih, K.: Control of nuclear spin generator system based on passive control. Chaos Soliton Fract. 41, 1897–1901 (2009)CrossRefGoogle Scholar
  33. 33.
    Wei, D.Q., Luo, X.S., Zhang, B., Qin, Y.H.: Controlling chaos in space-clamped FitzHughNagumo neuron by adaptive passive method. Nonlinear Anal. Real World Appl. 11, 1752–1759 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Sangpet, T., Kuntanapreeda, S.: Output feedback control of unified chaotic systems based on feedback passivity. Int. J. Bifurcat. Chaos 20, 1519–1525 (2010)CrossRefMATHGoogle Scholar
  35. 35.
    Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Ma, X.Y.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, Faculty of EngineeringKing Mongkut’s University of Technology North BangkokBangkokThailand

Personalised recommendations