Skip to main content
Log in

Backlash identification for PMSM servo system based on relay feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel method of backlash identification for PMSM servo system based on a relay feedback technique. We develop this method by analyzing the motor velocity signal in time domain under a strong assumption that the speed signal can be viewed as piecewise segments. The proposed approach takes a dead-zone model to describe the backlash and adopts an elastic two-mass model to represent the servo system. In view of response speed and differential noise, the motor velocity has been chosen to be the feedback signal. It should be pointed that particular attention ought to be paid to the choices of the parameters of the delay element and the relay component. This is because undervalued choices may lead to system chaos and thus the failure of identification. Since little knowledge is available about the potential backlash size, the identification procedure is performed iteratively until the identified value converges to its true value. This new strategy only requires one encoder on the motor side, from which the position and speed signals can be acquired. To complete the identification process, however, knowledge of both the motor’s moment of inertia and the load’s moment of inertia is needed. Simulation and experimental results validate that this new strategy is easy and fast to execute with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brouri, A., Giri, F., Rochdi, Y., Chaoui, F.Z.: Frequency identification of nonparametric Hammerstein systems with backlash nonlinearity. In: American Control Conference (ACC). Proceedings of the American Control Conference, pp. 657–662. IEEE, New York (2011)

  2. Chen, H.F.: Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Trans. Automat. Contr. 51(3), 390–400 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chen, J., Lu, X.L., Ding, R.F.: Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities. J. Vib. Control 20(4), 634–640 (2014)

    Article  MathSciNet  Google Scholar 

  4. Chen, S.L., Tan, K.K., Huang, S.N.: Friction modeling and compensation of servomechanical systems with dual-relay feedback approach. IEEE Trans. Contr. Syst. Technol. 17(6), 1295–1305 (2009)

    Article  Google Scholar 

  5. Chen, X.D., Fang, F., Luo, X.: A friction identification approach based on dual-relay feedback configuration with application to an inertially stabilized platform. Mechatronics 24(8), 1120–1131 (2014)

    Article  Google Scholar 

  6. Gebler, D., Holtz, J.: Identification and compensation of gear backlash without output position sensor in high-precision servo systems. In: IEEE Industrial Electronics Society, Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, pp. 662–666. AACHEN, GERMANY (1998)

  7. Huang, X.Y., Zhang, H., Zhang, G.G., Wang, J.M.: Robust weighted gain-scheduling h-infinity vehicle lateral motion control with considerations of steering system backlash-type hysteresis. IEEE Trans. Contr. Syst. Technol. 22(5), 1740–1753 (2014)

    Article  Google Scholar 

  8. Jukic, T., Peric, N.: Model based backlash compensation. American Control Conference (ACC). In: Proceedings of the American Control Conference, pp. 775–780. IEEE, New York (2001)

  9. Lee, T.H., Tan, K.K., Lim, S.Y., Dou, H.F.: Iterative learning control of permanent magnet linear motor with relay automatic tuning. Mechatronics 10(1–2), 169–190 (2000)

    Article  Google Scholar 

  10. Liu, C., Wu, J.H., Liu, J., Xiong, Z.H.: High acceleration motion control based on a time-domain identification method and the disturbance observer. Mechatronics 24(6), 672–678 (2014)

    Article  MathSciNet  Google Scholar 

  11. Liu, J., Wu, J.H., Xiong, Z.H., Zhu, X.Y.: Servo system identification using relay feedback: A time-domain approach. J. Manuf. Sci. Eng. ASME 134(6), 061012 (2012)

  12. Liu, Z.C., Dong, X.M., Xue, J.P., Chen, Y.: Adaptive neural control for a class of time-delay systems in the presence of backlash or dead-zone non-linearity. IET Control Theoty A 8(11), 1009–1022 (2014)

    Article  MathSciNet  Google Scholar 

  13. Malas, A., Chatterjee, S.: Generating self-excited oscillation in a class of mechanical systems by relay-feedback. Nonlinear Dyn. 76(2), 1253–1269 (2014)

    Article  MathSciNet  Google Scholar 

  14. Nordin, M., Galic, J., Gutman, P.O.: New models for backlash and gear play. Int. J. Adapt. Control 11(1), 49–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Panda, R.C.: Estimation of parameters of under-damped second order plus dead time processes using relay feedback. Comput. Chem. Eng. 30(5), 832–837 (2006)

    Article  Google Scholar 

  16. Pupeikis, R.: On recursive parametric identification of wiener systems. Inf. Technol. Control 40(1), 21–28 (2011)

    Google Scholar 

  17. Reyland, J., Bai, E.W.: Generalized wiener system identification: general backlash nonlinearity and finite impulse response linear part. Int. J. Adapt. Control 28(11), 1174–1188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sander-Tavallaey, S., Saarinen, K.: Backlash identification in transmission unit. In: IEEE International Conference on Control Applications/International Symposium on Intelligent Control. IEEE International Conference on Control Applications, pp. 1325–1331. IEEE, New York (2009)

  19. Selmic, R.R., Lewis, F.L.: Backlash compensation in nonlinear systems using dynamic inversion by neural networks. Asian J. Control 2(2), 76–87 (2000)

    Article  Google Scholar 

  20. Shen, Q.Y., Ding, F.: Iterative estimation methods for Hammerstein controlled autoregressive moving average systems based on the key-term separation principle. Nonlinear Dyn. 75(4), 709–716 (2014)

    Article  MATH  Google Scholar 

  21. Tan, K.K., Lee, T.H., Huang, S.N., Xi, J.: Friction modeling and adaptive compensation using a relay feedback approach. IEEE Trans. Ind. Electron. 48(1), 169–176 (2001)

  22. Tong, S.C., Li, Y.M.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)

    Article  Google Scholar 

  23. Villwock, S., Pacas, M.: Time-domain identification method for detecting mechanical backlash in electrical drives. IEEE Trans. Ind. Electron. 56(2), 568–573 (2009)

    Article  Google Scholar 

  24. Voros, J.: Modeling and identification of nonlinear cascade and sandwich systems with general backlash. J. Electr. Eng. Slovak. 65(2), 104–110 (2014)

    Google Scholar 

  25. Voros, J.: Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models. Nonlinear Dyn. 79(3), 2187–2195 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, D.Q., Ding, F., Liu, X.M.: Least squares algorithm for an input nonlinear system with a dynamic subspace state space model. Nonlinear Dyn. 75(1–2), 49–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, H.Q., Chen, B., Liu, K.F., Liu, X.P., Lin, C.: Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Neural Netw. 25(5), 947–958 (2014)

    Article  Google Scholar 

  28. Wang, Q.G., Hang, C.C., Bi, Q.: Process frequency response estimation from relay feedback. Control Eng. Pract. 5(9), 1293–1302 (1997)

    Article  MathSciNet  Google Scholar 

  29. Wu, Y.F., Wang, Z.H., Li, Y.Y., Chen, W., Du, R.H., Chen, Q.W.: Characteristic modeling and control of servo systems with backlash and friction. Math. Pro. Eng. 2014, 328–450 (2014)

  30. Yu, C.P., Zhang, C.S., Xie, L.H.: A new deterministic identification approach to hammerstein systems. IEEE Trans. Signal Process. 62(1), 131–140 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Z.Q., Shen, H., Li, Z., Zhang, S.Z.: Zero-error tracking control of uncertain nonlinear systems in the presence of actuator hysteresis. Int. J. Syst. Sci. 46(15), 2853–2864 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported in part by National Natural Science Foundation of China under Grant 51575355, National Key Basic Research Program of China under Grant 2013CB035804 and China Postdoctoral Science Foundation under Grant 2015M80325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 43074 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, C. & Wu, J. Backlash identification for PMSM servo system based on relay feedback. Nonlinear Dyn 84, 2363–2375 (2016). https://doi.org/10.1007/s11071-016-2650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2650-3

Keywords

Navigation