Advertisement

Nonlinear Dynamics

, Volume 84, Issue 4, pp 2079–2098 | Cite as

Vibration energy harvesting with a nonlinear structure

  • Chunchuan Liu
  • Xingjian Jing
Original Paper

Abstract

In the paper, beneficial nonlinearities incurred by an X-shape structure are explored for advantageous vibration energy harvesting performance. To this aim, a nonlinear structure beneficial for vibration energy harvesting is proposed, which is composed by X-shape supporting structures and a rigid body. By designing structure nonlinearities, which are determined by several key structure parameters, the power output peak of the harvesting system can be much improved and the effective frequency bandwidth for energy harvesting can be obviously increased, especially at the low frequency range. A coupling effect can be created among nonlinear stiffness and damping characteristics by constructing a 2-DOF vibration system, which has great influence on the energy harvesting performance. The proposed nonlinear energy harvesting systems can obviously outperform the corresponding linear systems in the whole frequency range and also demonstrate advantages compared with some other existing nonlinear energy harvesting systems in the literature. The results in this study provide a novel and practical method for the design of effective and efficient energy harvesting systems (especially in the low frequency range).

Keywords

Energy harvesting systems X-shape structures Vibrations Nonlinear systems 

Notes

Acknowledgments

The authors gratefully acknowledge the support from a GRF project of Hong Kong RGC (Ref No.15206514), NSFC projects (No. 61374041 and 11402067) of China, Internal Competitive Research Grants of Hong Kong Polytechnic University, and a grant from the Innovation and Technology Commission of the HKSAR Government to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center.

References

  1. 1.
    Tang, L.H., Yang, Y.W., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867–1898 (2010)CrossRefGoogle Scholar
  2. 2.
    Chen, Z.S., Guo, B., Yang, Y.M., Cheng, C.C.: Metamaterials-based enhanced energy harvesting: a review. Phys. B 438, 1–8 (2014)CrossRefGoogle Scholar
  3. 3.
    Twiefel, J., Westermann, H.: Survey on broadband techniques for vibration energy harvesting. J. Intell. Mater. Syst. Struct. 24, 1291–1302 (2013)CrossRefGoogle Scholar
  4. 4.
    Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)CrossRefGoogle Scholar
  5. 5.
    Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)CrossRefGoogle Scholar
  6. 6.
    Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)CrossRefGoogle Scholar
  7. 7.
    Liu, J.Q., Fang, H.B., Xu, Z.Y., Mao, X.H., Shen, X.C., Chen, D., Chen, D., Liao, H., Cai, B.C.: A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron. J. 39, 802–806 (2008)CrossRefGoogle Scholar
  8. 8.
    Marinkovic, B., Koser, H.: Demonstration of wide bandwidth energy harvesting from vibrations. Smart Mater. Struct. 21, 065006 (2012)CrossRefGoogle Scholar
  9. 9.
    Challa, V.R., Prasad, M.G., Shi, Y., Fisher, F.T.: A vibration energy harvesting device with bidirectional resonance frequency tenability. Smart Mater. Struct. 17, 015035 (2008)CrossRefGoogle Scholar
  10. 10.
    Kim, I.H., Jung, H.J., Lee, B.M., Jang, S.J.: Broadband energy-harvesting using a two degree-of-freedom vibrating body. Appl. Phys. Lett. 98, 214102 (2011)CrossRefGoogle Scholar
  11. 11.
    Jang, S.J., Rustighi, E., Brennan, M.J., Lee, Y.P., Jung, H.J.: Design of a 2DOF vibrational energy harvesting device. J. Intell. Mater. Syst. Struct. 22, 443–449 (2011)CrossRefGoogle Scholar
  12. 12.
    Brennan, M.J., Tang, B., Melo, G.P., Lopes Jr, V.: An investigation into the simultaneous use of a resonator as an energy harvester and a vibration absorber. J. Sound Vib. 333, 1331–1343 (2014)CrossRefGoogle Scholar
  13. 13.
    Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Tehrani, M.G., Elliott, S.J.: Extending the dynamic range of an energy harvester using nonlinear damping. J. Sound Vib. 333, 623–629 (2014)CrossRefGoogle Scholar
  15. 15.
    Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)CrossRefGoogle Scholar
  16. 16.
    McInnesa, C.R., Gormana, D.G., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008)CrossRefGoogle Scholar
  17. 17.
    Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)CrossRefGoogle Scholar
  18. 18.
    Stanton, S.C., Owens, B.A.M., Mann, B.P.: Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. 331, 3617–3627 (2009)CrossRefGoogle Scholar
  19. 19.
    Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D 239, 640–653 (2010)CrossRefMATHGoogle Scholar
  20. 20.
    Renno, J.M., Daqaq, M.F., Inman, D.J.: On the optimal energy harvesting from a vibration source. J. Sound Vib. 320, 386–405 (2009)CrossRefGoogle Scholar
  21. 21.
    Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)CrossRefGoogle Scholar
  22. 22.
    Blarigan, L.V., Danzl, P., Moehlis, J.: A broadband vibrational energy harvester. Appl. Phys. Lett. 100, 253904 (2012)CrossRefGoogle Scholar
  23. 23.
    Harne, R.L., Thota, M., Wang, K.W.: Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvester. Appl. Phys. Lett. 102, 053903 (2013)CrossRefGoogle Scholar
  24. 24.
    Wu, Z., Harne, R.L., Wang, K.W.: Energy harvester synthesis via coupled linear-bistable system with multistable dynamics. J. Appl. Mech. 81, 061005 (2014)CrossRefGoogle Scholar
  25. 25.
    Harne, R.L., Wang, K.W.: Prospects for nonlinear energy harvesting systems designed near the elastic stability limit when driven by colored noise. J. Vib. Acoust. 136(2), 021009 (2014)CrossRefGoogle Scholar
  26. 26.
    Sardini, E., Serpelloni, M.: An efficient electromagnetic power harvesting device for low-frequency applications. Sens. Actuators A 172, 475–482 (2011)CrossRefGoogle Scholar
  27. 27.
    Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010)CrossRefMATHGoogle Scholar
  28. 28.
    Ma, T.W., Zhang, H., Xu, N.S.: A novel parametrically excited non-linear energy harvester. Mech. Syst. Signal Process. 28, 323–332 (2012)CrossRefGoogle Scholar
  29. 29.
    Vijayan, K., Friswell, M.I., Khodaparast, H.H., Adhikari, S.: Non-linear energy harvesting from coupled impacting beams. Int. J. Mech. Sci. 96–97, 101–109 (2015)CrossRefGoogle Scholar
  30. 30.
    Sun, X.T., Jing, X.J., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333, 2404–2420 (2014)Google Scholar
  31. 31.
    Xue, B.C.: Simulation study on scissor-like element vibrations. MSc Degree Thesis under supervision of X.J. Jing, The Hong Kong Polytechnic University (2012)Google Scholar
  32. 32.
    Liu, C.C., Jing, X.J., Chen, Z.B.: Band stop vibration suppression using a passive X-shape structured lever-type isolation system. Mech. Syst. Signal Process. 68–69, 342–353 (2016)CrossRefGoogle Scholar
  33. 33.
    Alibert, J.J., Seppecher, P., Dell’isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)Google Scholar
  34. 34.
    Dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. (2015). doi: 10.1007/s00033-015-0556-4 MathSciNetMATHGoogle Scholar
  35. 35.
    Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift Fur Angewandte Mathematik Und Physik (2015). doi: 10.1007/s00033-015-0588-9 MathSciNetMATHGoogle Scholar
  36. 36.
    Li, B., Wang, S., Yuan, R., Zhi, C.: Dynamics analysis method study based on linear array deployable structure symmetry of scissor-like element. J. Northwest. Polytech. Univ. 33(4), 665–671 (2015)Google Scholar
  37. 37.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley Inter-science, New York (1979)MATHGoogle Scholar
  38. 38.
    Rahimia, A., Zorlu, O., Muhtaroglu, A., Kulah, H.: An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS. Sens. Actuators A 188, 158–166 (2012)CrossRefGoogle Scholar
  39. 39.
    Jing, X.J., Lang, Z.Q.: Frequency Domain Analysis and Design of Nonlinear Systems based on Volterra Series Expansion: A Parametric Characteristic Approach. Springer, Switzerland (2015)CrossRefMATHGoogle Scholar
  40. 40.
    Xiao, Z., Jing, X.J., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332(5), 1335–1354 (2013)CrossRefGoogle Scholar
  41. 41.
    Jing, X.J., Lang, Z.Q., Billings, S.A.: Nonlinear influence in the frequency domain: alternating series. Syst. Control Lett. 60(5), 295–309 (2011)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58(3), 469–485 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHong Kong Polytechnic UniversityHung HomPeople’s Republic of China
  2. 2.Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research CenterHong KongPeople’s Republic of China
  3. 3.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations