Skip to main content
Log in

Adaptive dynamic surface error constrained control for MIMO systems with backlash-like hysteresis via prediction error technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the problem of adaptive dynamic surface error constrained control for a class of nonlinear multiple-input-multiple-output systems with unknown backlash-like hysteresis nonlinearities. By transforming the tracking errors into new virtual error variables which are incorporated into the proposed prescribed performance control strategy, the prescribed steady-state and transient performance can be ensured. Compared with the existing methods, we introduce the prediction error which is generated between the system state and the serial–parallel estimation model to construct the adaptive laws for neural network weights. The proposed prediction error technique can be used to compensate the tracking error, which implies that a higher accuracy of the identified neural network model is achieved. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed-loop systems are bounded and the output tracks the desired trajectory, while the tracking error are confined all times within the prescribed bounds. Finally, a simulation example is provided to confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. How, B.V.E., Ge, S.S., Choo, Y.S.: Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operation. IEEE Trans. Control Syst. Technol. 19, 208–220 (2011)

    Article  Google Scholar 

  2. Tee, K.P., Ge, S.S., Tay, E.H.: Adaptive control of electrostatic microactuator with bidirectional drive. IEEE Trans. Control Syst. Technol. 17, 340–352 (2009)

    Article  Google Scholar 

  3. Kothare, M.V., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32, 1361–1379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Birkhuser, Boston (2001)

    Book  MATH  Google Scholar 

  5. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45, 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Niu, B., Zhao, J.: Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems. Syst. Control Lett. 62, 963–971 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, L., Liu, Y.J., Chen, C.L.P.: Adaptive neural network control for a DC motor system with dead-zone. Nonlinear Dyn. 72(1–2), 141–147 (2013)

    Article  MathSciNet  Google Scholar 

  8. Liu, Y.J., Li, D.J., Tong, S.C.: Adaptive output feedback control for a class of nonlinear systems with full-state constraints. Int. J. Control 87, 281–290 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ren, B.B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21, 1339–1344 (2010)

    Article  Google Scholar 

  10. Tong, S.C., Sui, S., Li, Y.M.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2014.2327987

  11. Benchlioulis, C.P., Rovithakis, G.A.: Robust partial-state feedback prescribed performance control of cascade systems with unknown nonlinearities. IEEE Trans. Autom. Control 56, 2224–2239 (2011)

    Article  MathSciNet  Google Scholar 

  12. Marantos, P., Eqtami, A., Bechlioulis, C.P., Kyriakopoulos, K.J.: A prescribed performance robust nonlinear model predictive control framework. In: European IEEE Control Conference (ECC), pp. 2182–2187 (2014)

  13. Su, X., Shi, P., Wu, L., Karimi, H.R.: Design on fuzzy control for a class of stochastic nonlinear systems. In: IEEE American Control Conference (ACC), pp. 544–547 (2014)

  14. Song, H.T., Zhang, T., Zhang, G.L., Lu, C.J.: Robust dynamic surface control of nonlinear systems with prescribed performance. Nonlinear Dyn. 76, 599–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, W., Wen, C.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46, 2082–2091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Benchlioulis, C.P., Rovithakis, G.A.: Neuro-adaptive force/position control with prescribed performance and guaranteed contact maintenance. IEEE Trans. Neural Netw. 21, 1857–1868 (2010)

    Article  Google Scholar 

  17. Benchlioulis, C.P., Rovithakis, G.A.: Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45, 532–538 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bechlioulis, C.P., Doulgeri, Z., Rovithakis, G.A.: Guaranteeing prescribed performance and contact maintenance via an approximation free robot force/position controller. Automatica 48, 360–365 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Y.J., Tong, S.C.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica (in press). doi:10.1016/j.automatica.2015.10.034

  20. Zhang, X.Y., Lin, Y.: Adaptive tracking control for a class of pure-feedback nonlinear systems including actuator hysteresis and dynamic uncertainties. IET Control Theory Appl. 5, 1868–1880 (2011)

    Article  MathSciNet  Google Scholar 

  21. Su, C.Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresi. IEEE Trans. Autom. Control 45, 2427–2432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tao, G., Petar, V.K.: Adaptive control of plants with unknown hystereses. IEEE Trans. Autom. Control 40, 200–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Su, C.Y., Wang, Q.Q., Chen, X.K., Rakheja, S.: Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl–Ishlinskii hysteresis. IEEE Trans. Autom. Control 50, 2069–2073 (2005)

    Article  MathSciNet  Google Scholar 

  24. Dong, R.L, Tan, Y.H., Janschek, K.: Non-smooth predictive control for wiener systems with backlash-like hysteresis. IEEE/ASME Trans. Mechatron. doi:10.1109/TMECH.2015.2453794

  25. Hassani, V., Tjahjowidodo, T., Do, T.N.: A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49, 209–233 (2014)

    Article  Google Scholar 

  26. Wang, H., Chen, B., Liu, K., Liu, X., Lin, C.: Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25, 947–958 (2014)

    Article  Google Scholar 

  27. Wang, M., Liu, X., Shi, P.: Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41, 1681–1692 (2011)

    Article  MathSciNet  Google Scholar 

  28. Liu, L., Wang, Z.S., Zhang, H.G.: Adaptive NN fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing 152, 209–221 (2015)

    Article  MathSciNet  Google Scholar 

  29. Liu, Z., Lai, G.Y., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25, 2129–2140 (2014)

    Article  Google Scholar 

  30. Huang, J., Dou, L.H., Fang, H., Chen, J., Yang, Q.K.: Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics. Nonlinear Dyn. 81, 63–75 (2015)

    Article  MathSciNet  Google Scholar 

  31. Seto, D., Annaswamy, A., Baillieul, J.: Adaptive control of nonlinear systems with a triangular structure. IEEE Trans. Autom. Control 39, 1411–1428 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16, 195–202 (2005)

    Article  Google Scholar 

  33. Xie, X.J., Zhao, C.R.: State feedback stabilization of stochastic feedforward nonlinear systems with input time-delay. Acta Autom. Sin. 40(12), 2972–2976 (2014)

    Article  MathSciNet  Google Scholar 

  34. Chen, W., Jiao, L., Li, J., Li, R.: Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40, 939–950 (2010)

    Article  Google Scholar 

  35. Xu, B., Huang, X., Wang, D., Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control 16, 162–174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mehraeen, S., Jagannathan, S., Crow, M.: Power system stabilization using adaptive neural network-based dynamic surface control. IEEE Trans. Power Syst. 26, 669–680 (2011)

    Article  Google Scholar 

  37. Xu, B., Shi, Z.K., Yang, C.G., Sun, F.C.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 44, 2626–2634 (2014)

    Google Scholar 

  38. Bellomo, D., Naso, D., Turchiano, B., Babu ska, R.: Composite adaptive fuzzy control. In: Proceedings of the 16th IFAC World Congress Prague, Czech Republic, pp. 97–102 (2005)

  39. Pan, Y., Er, M.J., Sun, T.: Composite adaptive fuzzy control for synchronizing generalized Lorenz systems. Chaos: an interdisciplinary. J. Nonlinear Sci. 22, 023144 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Chen, C., Liu, Z., Zhang, Y., Chen, C.L.P., Xie, S.: Adaptive control of MIMO mechanical systems with unknown actuator nonlinearities based on the Nussbaum gain approach. IEEE/CAA J. Autom. Sin. 3(1), 26–34 (2016)

    Article  MathSciNet  Google Scholar 

  41. Chen, L., Wang, Q.: Adaptive robust control for a class of uncertain MIMO non-affine nonlinear systems. IEEE/CAA J. Autom. Sin. 3(1), 105–112 (2016)

    Article  MathSciNet  Google Scholar 

  42. Han, S.I., Lee, J.: Partial tracking error constrained fuzzy dynamic surface control for a strict feedback nonlinear dynamic system. IEEE Trans. Fuzzy Syst. 22, 1049–1061 (2014)

    Article  Google Scholar 

  43. Tong, S.C., Li, Y.M., Feng, G., Li, T.S.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41, 1124–1135 (2011)

    Article  Google Scholar 

  44. Wang, Z.S., Liu, L., Zhang, H.G., Xiao, G.Y.: Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm. IEEE Trans. Syst. Man Cybern.: Syst. (in press). doi:10.1109/TSMC.2015.2478885

  45. Liu, L., Wang, Z.S., Zhang, H.G.: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans. Autom. Sci. Eng. (in press). doi:10.1109/TASE.2016.2517155

  46. Macki, J.W., Nistri, P., Zecca, P.: Mathematical models for hysteresis. SIAM Rev. 35, 94–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Antonelli, R., Astolfi, A.: Continuous stirred tank reactors: easy to stabilise. Automatica 39, 1817–1827 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kaddissi, C., Kenne, J.P.: Maarouf Saad: indirect adaptive control of an electrohydraulic servo system based on nonlinear backstepping. IEEE/ASME Trans. Mechatron. 16, 1171–1177 (2011)

    Article  Google Scholar 

  49. Wang, H.Q., Liu, X.P., Chen, B., Zhou, Q.: Adaptive fuzzy decentralized control for a class of pure-feedback large-scale nonlinear systems. Nonlinear Dyn. 75(3), 449–460 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China of Grants 61473070 and 61433004, the Fundamental Research Funds for the Central Universities (Grant Nos. N130504002, N140406001 and N130104001), and SAPI Fundamental Research Funds (Grant No. 2013ZCX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, Z. & Zhang, H. Adaptive dynamic surface error constrained control for MIMO systems with backlash-like hysteresis via prediction error technique. Nonlinear Dyn 84, 1989–2002 (2016). https://doi.org/10.1007/s11071-016-2622-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2622-7

Keywords

Navigation