Advertisement

Nonlinear Dynamics

, Volume 84, Issue 3, pp 1623–1636 | Cite as

Sampled-data synchronization and state estimation for nonlinear singularly perturbed complex networks with time-delays

  • R. Rakkiyappan
  • K. Sivaranjani
Original Paper

Abstract

This study deals with the problem of exponential synchronization and state estimation for singularly perturbed complex networks (SPCNs) with coupling delay under sampled-data control technique. Every node of the SPCNs involve both ‘fast’ and ‘slow’ dynamics that reveals the singular perturbation behavior. By constructing novel Lyapunov functional and by using Kronecker product, some adequate conditions which assure the exponential synchronization are attained in the form of linear matrix inequalities. Moreover, the exponential state estimation problem for the SPCNs are also considered and the state estimator is designed. Lastly, numerical simulations are presented to validate the advantage of the propound theoretical results.

Keywords

Synchronization Singularly perturbed complex networks  Sampled-data control State estimation 

References

  1. 1.
    Fang, M.: Synchronization for complex dynamical networks with discrete time information. Appl. Math. Comput. 258, 1–11 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Park, M.J., Kwon, O.M., Park, J.H., Lee, S.M., Cha, E.J.: Synchronization of discrete-time complex dynamical networks with interval time-varying delays via non-fragile controller with randomly occurring perturbation. J. Franklin Inst. 351, 4850–4871 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Xie, C., Xu, Y., Tong, D.: Synchronization of time varying delayed complex networks via impulsive control. Optik 125, 3781–3787 (2014)CrossRefGoogle Scholar
  4. 4.
    Cheng, Q., Cao, J.: Synchronization of complex dynamical networks with discrete time-delays on time scales. Neurocomputing 151, 729–736 (2015)CrossRefGoogle Scholar
  5. 5.
    Li, N., Sun, H., Jing, X., Zhang, Q.: Exponential synchronization of united complex dynamical networks with multi-links via adaptive periodically intermittent control. IET Control Theory Appl. 7, 1725–1736 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dai, Y., Cai, Y., Xu, X.: Synchronization analysis and impulsive control of complex networks with coupling delays. IET Control Theory Appl. 3, 1167–1174 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhao, M., Zhang, H., Wang, Z.: Synchronization in complex dynamical networks based on the feedback of scalar signals. Neural Comput. Appl. 23, 683–689 (2013)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Gu, D.Y., Xu, S.: Global exponential adaptive synchronization of complex dynamical networks with neutral-type neural network nodes and stochastic disturbances. IEEE Trans. Circuits Syst. I (2013). doi: 10.1109/TCSI.2013.2249151
  9. 9.
    Park, J.H., Lee, T.H.: Synchronization of complex dynamical networks with discontinuous coupling signals. Nonlinear Dyn. 79, 1353–1362 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Zhang, L., Wang, Y., Huang, Y., Chen, X.: Delay-dependent synchronization for non-diffusively coupled time-varying complex dynamical networks. Appl. Math. Comput. 259, 510–522 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cai, C., Xu, Jing, Liu, Yurong, Zou, Y.: Synchronization for linear singularly perturbed complex networks with coupling delays. Int. J. Gen. Syst. 44, 240–253 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zhai, S., Yang, X.S.: Bounded synchronization of singularly perturbed complex network with an application to power systems. IET Control Theory Appl. (2014). doi: 10.1049/iet-cta.2013.0453 MathSciNetMATHGoogle Scholar
  13. 13.
    Cai, C., Wang, Z., Xu, J., Alsaed, A.: Decomposition approach to exponential synchronization for a class of non-linear singularly perturbed complex networks. IET Control Theory Appl. (2014). doi: 10.1049/iet-cta.2014.0102 Google Scholar
  14. 14.
    Fridman, E.: Effects of small delays on stability of singularly perturbed systems. Automatica 38, 897–902 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kang, K., Park, K.S., Lim, J.T.: Exponential stability of singularly perturbed systems with time-delay and uncertainties. Int. J. Syst. Sci. 46, 170–178 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Li, H.: \(H_{\infty }\) cluster synchronization and state estimation for complex dynamical networks with mixed time delays. Appl. Math. Model. 37, 7233–7244 (2013)Google Scholar
  17. 17.
    Kan, X., Shu, H., Li, Z.: Robust state estimation for discrete-time neural networks with mixed time-delays, linear fractional uncertainties and successive packet dropouts. Neurocomputing 135, 130–138 (2014)Google Scholar
  18. 18.
    Ren, J., Zhu, H., Zhong, S., Ding, Y., Shi, K.: State estimation for neural networks with multiple time-delays. Neurocomputing 151, 501–510 (2015)CrossRefGoogle Scholar
  19. 19.
    Li, L., Yang, Y.: On sampled-data control for stabilization of genetic regulatory networks with leakage delays. Neurocomputing 149, 1225–1231 (2015)CrossRefGoogle Scholar
  20. 20.
    Fridman, E., Seuret, A., Richard, J.P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rakkiyappan, R., Dharani, S., Zhu, Q.: Synchronization of reaction–diffusion neural networks with time-varying delays via sampled-data controller. Nonlinear Dyn. 79, 485–500 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sakthivel, R., Santra, S., Mathiyalagan, K., Marshal Anthoni, S.: Robust reliable sampled-data control for offshore steel jacket platforms with nonlinear perturbations. Nonlinear Dyn. 78, 1109–1123 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Rakkiyappan, R., Sivasamy, R., Cao, J.: Stochastic sampled-data stabilization of neural-network-based control systems. Nonlinear Dyn. 81, 1823–1839 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sivaranjani, K., Rakkiyappan, R., Lakshmanan, S., Lim, C.P.: Robust stochastic sampled-data control for offshore steel jacket platforms with nonlinear perturbations. IMA J. Math. Control Inf. (2015). doi: 10.1093/imamci/dnv046 Google Scholar
  25. 25.
    Li, H.: Sampled-data state estimation for complex dynamical networks with time-varying delay and stochastic sampling. Neurocomputing 138, 78–85 (2014)CrossRefGoogle Scholar
  26. 26.
    Anbuvithya, R., Mathiyalagan, K., Sakthivel, R., Prakash, P.: Sampled-data state estimation for genetic regularity networks with time-varying delays. Neurocomputing 151, 737–744 (2015)CrossRefGoogle Scholar
  27. 27.
    Rakkiyappan, R., Chandrasekar, A., Park, J.H., Kwon, O.M.: Exponential synchronization criteria for Markovian jumping neural networks with time-varying delays and sampled-data control. Nonlinear Anal. Hybrid Syst. 14, 16–37 (2014)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Gan, Q., Liang, Y.: Synchronization of chaotic neural networks with time delay in the leakage term and parametric uncertainties based on sampled-data control. J. Franklin Inst. 349, 1955–1971 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Cai, C., Wang, Z., Xu, J., Liu, X., Alsaadi, E.F.: An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks. IEEE Trans. Cybern. (2014). doi: 10.1109/TCYB.2014.2356560 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations