Nonlinear Dynamics

, Volume 84, Issue 3, pp 1609–1622 | Cite as

Saturated finite-time stabilization of uncertain nonholonomic systems in feedforward-like form and its application

  • Yuqiang Wu
  • Fangzheng Gao
  • Zhongcai Zhang
Original Paper


This paper investigates the problem of finite-time stabilization by state feedback for a class of uncertain nonholonomic systems with inputs saturation. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is in feedforward-like form. Rigorous design procedure for saturated finite-time state feedback control is presented by using the adding a power integrator and the nested saturation methods. The development of saturated finite-time controller is also presented briefly for a class of dynamic nonholonomic systems in feedforward-like form. An application example for a kinematic hopping robot is provided to illustrate the effectiveness of the proposed approach.


Nonholonomic systems Inputs saturation Adding a power integrator Nested saturation Finite-time stabilization 



The authors thank the editor and the anonymous reviewers for their constructive comments and suggestions for improving the quality of the paper. This work is partially supported by National Nature Science Foundation of China under Grants 61273091, 61403003, the Project of Taishan Scholar of Shandong Province of China under Grant TS20120529, the PhD Program Foundation of Ministry of Education of China under Grant 20123705110002, the Key Program of Science Technology Research of Education Department of Henan Province under Grants 13A120016, 14A520003, and the Graduate Student Innovation Foundation of Jiangsu Province of China under Grant No. KYLX15_0116.


  1. 1.
    Udwadia, F.E., Koganti, P.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82(1–2), 547–562 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Udwadia, F.E., Koganti, P.B., Wanichanon, T., Stipanovic, D.M.: Decentralised control of nonlinear dynamical systems. Int. J. Control 87(4), 827–843 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Urakubo, T.: Feedback stabilization of a nonholonomic system with potential fields: application to a two-wheeled mobile robot among obstacles. Nonlinear Dyn. 81(3), 1475–1487 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic constrained dynamic systems using Gauss’s principle. J. Appl. Mech. 60(3), 662–668 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–195. Birkhauser, Boston (1983)Google Scholar
  6. 6.
    Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27(1), 37–45 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Xu, W.L., Huo, W.: Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator. Syst. Control Lett. 41(4), 225–235 (2000)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jiang, Z.P.: Iterative design of time-varying stabilizers for multi-input systems in chained form. Syst. Control Lett. 28(5), 255–262 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Tian, Y.P., Li, S.H.: Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica 38(7), 1139–1146 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Yuan, H.L., Qu, Z.H.: Smooth time-varying pure feedback control for chained nonholonomic systems with exponential convergent rate. IET Control Theory Appl. 4(7), 1235–1244 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Walsh, G.C., Bushnell, L.G.: Stabilization of multiple input chained form control systems. Syst. Control Lett. 25(3), 227–234 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hespanha, J.P., Linberzon, S., Morse, A.S.: Towards the supervisory control of uncertain nonholonomic systems. In: Proc. American Control Conf, San Diego, pp. 3520–3524 (1999)Google Scholar
  13. 13.
    Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Trans. Control Syst. Mag. 15(6), 20–36 (1995)CrossRefGoogle Scholar
  14. 14.
    Jiang, Z.P.: Robust exponential regulation of nonholonomic systems with uncertainties. Automatica 36(2), 189–209 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ge, S.S., Wang, Z.P., Lee, T.H.: Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39(8), 1451–1460 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Liu, Y.G., Zhang, J.F.: Output feedback adaptive stabilization control design for nonholonomic systems with strong nonlinear drifts. Int. J. Control 78(7), 474–490 (2005)CrossRefMATHGoogle Scholar
  17. 17.
    Xi, Z.R., Feng, G., Jiang, Z.P., Cheng, D.Z.: Output feedback exponential stabilization of uncertain chained systems. J. Franklin Inst. 344(1), 36–57 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zheng, X.Y., Wu, Y.Q.: Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts. Nonlinear Anal. Theory Methods Appl. 70(2), 904–920 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gao, F.Z., Yuan, F.S., Yao, H.J.: Robust adaptive control for nonholonomic systems with nonlinear parameterization. Nonlinear Anal. Real World Appl. 11(4), 3242–3250 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gao, F.Z., Yuan, F.S., Yao, H.J., Mu, X.W.: Adaptive stabilization of high order nonholonomic systems with strong nonlinear drifts. Appl. Math. Model. 35(9), 4222–4233 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wu, Y.Q., Zhao, Y., Yu, J.B.: Global asymptotic stability controller of uncertain nonholonomic systems. J. Franklin Inst. 350(5), 1248–1263 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hong, Y.G., Wang, J.K., Xi, Z.R.: Stabilization of uncertain chained form systems within finite settling time. IEEE Trans. Autom. Control 50(9), 1379–1384 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, J.K., Zhang, G.S., Li, H.Y.: Adaptive control of uncertain nonholonomic systems in finite time. Kybernetika 45(5), 809–824 (2009)MathSciNetMATHGoogle Scholar
  25. 25.
    Gao, F.Z., Yuan, F.S.: Adaptive finite-time stabilization for a class of uncertain high order nonholonomic systems. ISA Trans. 55(1), 41–48 (2015)CrossRefGoogle Scholar
  26. 26.
    Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1–2), 669–683 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Wu, Y.Q., Gao, F.Z., Liu, Z.G.: Finite-time state feedback stabilization of nonholonomic systems with low-order nonlinearities. IET Control Theory Appl. 9(10), 1553–1560 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Perez-Arancibia, N.O., Tsao, T.C., Gibson, J.S.: Saturation-induced instability and its avoidance in adaptive control of hard disk drives. IEEE Trans. Control Syst. Technol. 18(2), 368–382 (2010)CrossRefGoogle Scholar
  29. 29.
    Zhao, J., Shen, H., Li, B., Wang, J.: Finite-time \(H_{\infty }\) control for a class of Markovian jump delayed systems with input saturation. Nonlinear Dyn. 73(1–2), 1099–1110 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Jiang, Z.P., Lefeber, E., Nijmeijer, H.: Saturated stabilization and tracking of a nonholonomic mobile robot. Syst. Control Lett. 42(5), 327–332 (2001)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Wang, C.L.: Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs. Automatica 44(3), 816–822 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Huang, J.S., Wen, C.Y., Wang, W., Jiang, Z.P.: Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance. Syst. Control Lett. 62(3), 234–241 (2013)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Chen, H., Wang, C.L., Liang, Z.Y., et al.: Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation. Asian J. Control 16(3), 692–702 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Luo, J., Tsiotras, P.: Control design of chained form systems with bounded inputs. Syst. Control Lett. 39(2), 123–131 (2000)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Yuan, H.L., Qu, Z.H.: Saturated control of chained nonholonomic systems. Eur. J. Control 17(2), 172–179 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Jammazi, C.: Continuous and discontinuous homogeneous feedbacks finite-time partially stabilizing controllable multichained systems. SIAM J. Control Optim. 52(1), 520–544 (2014)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zhang, Z.C., Wu, Y.Q., Sun, W.: Modeling and adaptive motion/force tracking for vertical wheel on rotating table. J. Syst. Eng. Electron. 26(5), 1060–1069 (2015)CrossRefGoogle Scholar
  38. 38.
    Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 679–682 (1998)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Qian, C.J., Li, J.: Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach. Int. J. Robust Nonlinear Control 16(9), 605–629 (2006)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Ding, S.H., Qian, C.J., Li, S.H., Li, Q.: Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations. Int. J. Robust Nonlinear Control 21(3), 271–294 (2011)Google Scholar
  41. 41.
    Tian, W.S., Qian, C.J., Du, H.B.: A generalised homogeneous solution for global stabilisation of a class of non-smooth upper-triangular systems. Int. J. Control 87(5), 951–963 (2014)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)MathSciNetMATHGoogle Scholar
  43. 43.
    Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body pendulum. Nonlinear Dyn. 81(1), 845–866 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of AutomationQufu Normal UniversityQufuChina
  2. 2.School of AutomationSoutheast UniversityNanjingChina
  3. 3.School of Mathematics and StatisticsAnyang Normal UniversityAnyangChina

Personalised recommendations