Skip to main content
Log in

Weak harmonic signal detection method from strong chaotic interference based on convex optimization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Noticing that the second-order matrix of chaotic signal is stationary, we propose a method for detecting weak harmonic signal from strong chaotic interference based on convex optimization. After a data matrix in frequency domain is composed by combining reference cells and the detection cell, we detect weak harmonic signals by searching each frequency channel based on an optimization filter. Then, the signal detection problem is boiled down to an optimization problem. Further, we design an optimization filter based on second-order cone programs. The filter can maintain the gain of signal from current frequency channel and suppress signals from other frequency channels. The harmonic signal can be detected by the output signal-to-interference-plus-noise ratio (SINR) of each frequency channel. Compared with the neural network methods, the proposed method has following advantages: (1) It can detect weak harmonic signal under lower SINR and (2) it is robust against white Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xing, H.Y., Cheng, Y.Y., Xu, W.: Detection of weak target signal with least-squares support vector machine and generalized embedding windows under chaotic background. Acta Phys. Sin. 61(10), 100506–100506 (2012)

    Google Scholar 

  2. Xiang, X.Q., Shi, B.C.: Weak signal detection based on the information fusion and chaotic oscillator. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 261–300 (2010)

  3. Zhang, J.G., Xu, H., Wang, B.J., Liu, L., Su, P.C., Li, J.X.: Wiring fault detection with Boolean-chaos time-domain reflectometry. Nonlinear Dyn. 80, 553–559 (2015)

    Article  Google Scholar 

  4. Li, H.T., Zhu, S.L., Qi, C.H., Gao, M.X., Wang, G.Z.: Nonlinear analysis of drivers heart rate variability on the Prairie Highway. Adv. Mater. Res. 734, 3145–3151 (2013)

    Article  Google Scholar 

  5. Wu, Y.F., Huang, S.P., Jin, G.B.: Study on partial discharge signal detection by coupled Duffing oscillators. Acta Phys. Sin. 62(13), 130505–130505 (2013)

    Google Scholar 

  6. Khunkitti, P., Kaewrawang, A., Siritaratiwat, A., Mewes, T., Mewes, C.K., Kruesubthaworn, A.: A novel technique to detect effects of electromagnetic interference by electrostatic discharge simulator to test parameters of tunneling magnetoresistive read heads. J. Appl. Phys. 117(17), 17A908 (2015)

    Article  Google Scholar 

  7. Panagopoulos, S., Soraghan, J.J.: Small-target detection in sea clutter. IEEE Trans. Geos. Remote Sens. 42(7), 1355–1361 (2004)

    Article  Google Scholar 

  8. Guan, J., Liu, N.B., Huang, Y., He, Y.: Fractal characteristic in frequency domain for target detection within sea clutter. IET Radar Sonar Navig. 6(5), 293–306 (2012)

    Article  Google Scholar 

  9. Eski, I., Temürlenk, A.: Design of neural network-based control systems for active steering system. Nonlinear Dyn. 73(3), 1443–1454 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ivancevic, T., Jain, L., Pattison, J., Hariz, A.: Nonlinear dynamics and chaos methods in neurodynamics and complex data analysis. Nonlinear Dyn. 56(1–2), 23–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tuntas, R.: A new intelligent hardware implementation based on field programmable gate array for chaotic systems. Appl. Soft Comput. 35, 237–246 (2015)

    Article  Google Scholar 

  12. Hennessey, G., Leung, H., Drosopoulos, A., Yip, P.C.: Sea-clutter modeling using a radial-basis-function neural network. IEEE J. Ocean. Eng. 26(3), 358–372 (2001)

    Article  Google Scholar 

  13. Han, M., Xi, J., Xu, S., Lin, F.L.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52(12), 3409–3416 (2004)

    Article  MathSciNet  Google Scholar 

  14. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  15. Xue, Y.B., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibition. Neural Netw. 20(4), 365–376 (2007)

    Article  MATH  Google Scholar 

  16. Vali, R., Berber, S.M., Nguang, S.K.: Analysis of chaos-based code tracking using chaotic correlation statistics. IEEE Trans. Cir. Syst. I Reg. Pap. 59(4), 796–805 (2012)

    Article  MathSciNet  Google Scholar 

  17. Vidal, P., Kanzieper, E.: Statistics of reflection eigenvalues in chaotic cavities with nonideal leads. Phys. Rev. Lett. 108(20), 206806 (2012)

    Article  Google Scholar 

  18. Li, C.T., Lee, C.W., Shen, J.J.: An extended chaotic maps-based keyword search scheme over encrypted data resist outside and inside keyword guessing attacks in cloud storage services. Nonlinear Dyn. 80(3), 1601–1611 (2015)

  19. Hu, J.F., Guo, J.B.: Breaking a chaotic secure communication scheme. Chaos Interdiscip. J. Nonlinear Sci. 18(1), 013121 (2008)

    Article  MathSciNet  Google Scholar 

  20. Zheng, H., Hu, J., Wu, P., Liu, L., He, Z.: Study on synchronization and parameters insensitivity of a class of hyperchaotic systems using nonlinear feedback control. Nonlinear Dyn. 67(2), 1515–1523 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vorobyov, S.A., Gershman, A.B., Luo, Z.: Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313–324 (2003)

    Article  Google Scholar 

  22. Khabbazibasmenj, A., Vorobyov, S.A., Hassanien, A.: Robust Adaptive Beamforming Based on Steering Vector Estimation With as Little as Possible Prior Information. IEEE Trans. Signal Process. 60(6), 2974–2987 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Hu.

Additional information

This work is supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. ZYGX2014J021) and the National Natural Science Foundation of China (Grant Nos. 61101172, 61371184, 61101173, 61201280).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhang, Y., Yang, M. et al. Weak harmonic signal detection method from strong chaotic interference based on convex optimization. Nonlinear Dyn 84, 1469–1477 (2016). https://doi.org/10.1007/s11071-015-2582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2582-3

Keywords

Navigation