Skip to main content
Log in

Extension of Lyapunov direct method about the fractional nonautonomous systems with order lying in \(\mathbf{(1,2)}\)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, Lyapunov direct method is employed to study the stability problem of Caputo-type fractional nonautonomous systems with order between 1 and 2. By utilizing Riemann–Liouville fractional integral, some sufficient conditions on stability are derived. In the proof of the obtained results, Bellman–Gronwall’s inequality, the generalized Bihari inequality and estimates of Mittag-Leffler functions are employed. Besides, two examples and corresponding numerical simulations are provided to show the validity and feasibility of the proposed stability criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)

    Article  Google Scholar 

  2. Machado, J.T.: Fractional order description of DNA. Appl. Math. Model. 39, 4095–4102 (2015)

  3. Valério, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17, 552–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Machado, J.T.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14, 3492–3497 (2009)

    Article  Google Scholar 

  5. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceedings of IMACS-SMC, 2, 963–968, Lille France (1996)

  6. Qian, D., Li, C.P., Agarwal, R.P., Wong, P.J.: Stability analysis of fractional differential system with Riemann–Liouville derivative. Math. Comput. Model. 52, 862–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79, 1566–1576 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013). doi:10.1155/2013/356215

    Article  MathSciNet  MATH  Google Scholar 

  10. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  11. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

  14. Zhang, F.R., Li, C.P., Chen, Y.Q.: Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int. J. Differ. Equ. 2011, 635165 (2011). doi:10.1155/2011/635165

    MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Fractional diffusion: probability distributions and random walk models. Phys. A 305, 106–112 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gafiychuk, V., Datsko, B.: Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Comput. Math. Appl. 59, 1101–1107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Beghin, L., Orsingher, E.: The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation. Fract. Calc. Appl. Anal. 6, 187–204 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, W., Cai, X., Holm, S.: Time-fractional heat equations and negative absolute temperatures. Comput. Math. Appl. 67, 164–171 (2014)

    Article  MathSciNet  Google Scholar 

  20. Chen, L.P., Chai, Y., Wu, R.C., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II Express Briefs 59, 602–606 (2012)

    Article  Google Scholar 

  21. Chen, L.P., He, Y.G., Chai, Y., Wu, R.C.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  25. Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bainov, D.D., Simeonov, P.S.: Integral Inequalities and Applications. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  27. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jewsey (2002)

    MATH  Google Scholar 

  28. Shahri, E.S.A., Alfi, A., Machado, J.T.: An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Appl. Math. Lett. 47, 26–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. De la Sen, M.: About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2011, 867932 (2011). doi:10.1155/2011/867932

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful suggestions and comments. This work was supported by the National Science and Technology Major Project (No. 2012CB821202), the National Nature Science Foundation ( No. 61327807) and Beijing Natural Science Foundation (No. 4122043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Ma, B. Extension of Lyapunov direct method about the fractional nonautonomous systems with order lying in \(\mathbf{(1,2)}\) . Nonlinear Dyn 84, 1353–1361 (2016). https://doi.org/10.1007/s11071-015-2573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2573-4

Keywords

Navigation