Nonlinear Dynamics

, Volume 84, Issue 3, pp 1353–1361 | Cite as

Extension of Lyapunov direct method about the fractional nonautonomous systems with order lying in \(\mathbf{(1,2)}\)

  • Yuxiang Guo
  • Baoli Ma
Original Paper


In this paper, Lyapunov direct method is employed to study the stability problem of Caputo-type fractional nonautonomous systems with order between 1 and 2. By utilizing Riemann–Liouville fractional integral, some sufficient conditions on stability are derived. In the proof of the obtained results, Bellman–Gronwall’s inequality, the generalized Bihari inequality and estimates of Mittag-Leffler functions are employed. Besides, two examples and corresponding numerical simulations are provided to show the validity and feasibility of the proposed stability criterion.


Caputo derivative Fractional nonautonomous systems  Bihari-type inequality Bellman–Gronwall’s inequality Globally uniformly asymptotically stable 



The authors would like to thank the anonymous reviewers for their helpful suggestions and comments. This work was supported by the National Science and Technology Major Project (No. 2012CB821202), the National Nature Science Foundation ( No. 61327807) and Beijing Natural Science Foundation (No. 4122043).


  1. 1.
    Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)CrossRefGoogle Scholar
  2. 2.
    Machado, J.T.: Fractional order description of DNA. Appl. Math. Model. 39, 4095–4102 (2015)Google Scholar
  3. 3.
    Valério, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17, 552–578 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Machado, J.T.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14, 3492–3497 (2009)CrossRefGoogle Scholar
  5. 5.
    Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceedings of IMACS-SMC, 2, 963–968, Lille France (1996)Google Scholar
  6. 6.
    Qian, D., Li, C.P., Agarwal, R.P., Wong, P.J.: Stability analysis of fractional differential system with Riemann–Liouville derivative. Math. Comput. Model. 52, 862–874 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79, 1566–1576 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013). doi: 10.1155/2013/356215 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)Google Scholar
  14. 14.
    Zhang, F.R., Li, C.P., Chen, Y.Q.: Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int. J. Differ. Equ. 2011, 635165 (2011). doi: 10.1155/2011/635165 MathSciNetMATHGoogle Scholar
  15. 15.
    Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Fractional diffusion: probability distributions and random walk models. Phys. A 305, 106–112 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gafiychuk, V., Datsko, B.: Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Comput. Math. Appl. 59, 1101–1107 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Beghin, L., Orsingher, E.: The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation. Fract. Calc. Appl. Anal. 6, 187–204 (2003)MathSciNetMATHGoogle Scholar
  19. 19.
    Zhang, W., Cai, X., Holm, S.: Time-fractional heat equations and negative absolute temperatures. Comput. Math. Appl. 67, 164–171 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, L.P., Chai, Y., Wu, R.C., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II Express Briefs 59, 602–606 (2012)CrossRefGoogle Scholar
  21. 21.
    Chen, L.P., He, Y.G., Chai, Y., Wu, R.C.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  24. 24.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006)MATHGoogle Scholar
  25. 25.
    Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Bainov, D.D., Simeonov, P.S.: Integral Inequalities and Applications. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  27. 27.
    Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jewsey (2002)MATHGoogle Scholar
  28. 28.
    Shahri, E.S.A., Alfi, A., Machado, J.T.: An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Appl. Math. Lett. 47, 26–34 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    De la Sen, M.: About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2011, 867932 (2011). doi: 10.1155/2011/867932 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.The Seventh Research DivisionBeijing University of Aeronautics and AstronauticsBeijingPeople’s Republic of China

Personalised recommendations