Advertisement

Nonlinear Dynamics

, Volume 84, Issue 3, pp 1303–1310 | Cite as

Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network

  • Jiqian Zhang
  • Shoufang Huang
  • Sitao Pang
  • Maosheng Wang
  • Sheng Gao
Original Paper

Abstract

In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.

Keywords

HR neural network Synchronization Chaotic ant swarm optimization Algorithm 

Notes

Acknowledgments

This work is supported by the National Natural Science and special Found for the Theoretical Physics of China (21103002, 11047017), the Natural Science Funds of Anhui Province of China (No. 1508085MA15).

References

  1. 1.
    Osipov, G.V., Kurths, J., Zhou, C.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Wang, Q.Y., Zheng, Y.H., Ma, J.: Cooperative dynamics in neuronal networks. Chaos Solitons Fractals 56, 19–27 (2013)CrossRefGoogle Scholar
  3. 3.
    Wei, D.Q., Luo, X.S., Zhang, B.: Chaos synchronization of brushless DC motors based on LaSalle invariance principle. Nonlinear Dyn. 69(8), 1733–1738 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Wang, Q.Y., Chen, G.R., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS One 6(1), e15851,1-10 (2011)Google Scholar
  5. 5.
    Tang, J., Ma, J., Yi, M., Xia, H., Yang, X.Q.: Delay and diversity-induced synchronization transitions in a small-world neuronal network. Phys. Rev. E. 83, 046207-1-4 (2011)Google Scholar
  6. 6.
    Zhang, J.Q., Chen, H.S., Wang, M.S.: Enhanced synchronization of intercellular calcium oscillations by noise contaminated signals. Commun. Theor. Phys. 50, 903–906 (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, M.S., Hou, Z.H., Xin, H.W.: Optimal network size for Hodgkin–Huxley neurons. Phys. Lett. A 334, 93–97 (2005)CrossRefMATHGoogle Scholar
  8. 8.
    Chen, H.S., Zhang, J.Q., Liu, J.Q.: Enhancement of neuronal coherence by diversity in coupled Rulkov-map models. Phys. A 387, 1071–1076 (2008)CrossRefGoogle Scholar
  9. 9.
    Zhang, J.Q., Wang, C.D., Wang, M.S., Huang, S.F.: Firing patterns transition induced by system size in coupled Hindmarsh–Rose neural system. Neurocomputing 74, 2961–2966 (2011)CrossRefGoogle Scholar
  10. 10.
    Wang, Q.Y., Zhang, H.H., Chen, G.R.: Stimulus-induced transition of clustering firings in neuronal networks with information transmission delay. Eur. Phys. J. B. 86(7), 1–7 (2013)MathSciNetGoogle Scholar
  11. 11.
    Neefs, P.J., Steur, E., Nijmeijer, H.: Network complexity and synchronous behavior—an experimental approach. Int. J. Neural Syst. 20, 233–243 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Phys. A. 389, 3299–3306 (2010)CrossRefGoogle Scholar
  13. 13.
    Xu, B., Gong, Y.B., Wang, L., Wu, Y.A.: Multiple synchronization transitions due to periodic coupling strength in delayed Newman-Watts networks of chaotic bursting neurons. Nonlinear Dyn. 72, 79–86 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yu, Q.: Time delay and long-range connection induced synchronization transitions in Newman–Watts small-world neuronal networks. PLoS One 9, e96415 (2014)CrossRefGoogle Scholar
  15. 15.
    Zheng, Y.G., Wang, Z.H.: Time delay included different synchronization patterns in repulsively coupled chaotic oscillators. Chaos 22, 043127-1-6 (2012)CrossRefGoogle Scholar
  16. 16.
    Yao, C.G., Yi, M., Shuai, J.W.: Time delay included different synchronization patterns in repulsively coupled chaotic oscillators. Chaos 23, 033140-1-7 (2013)CrossRefMATHGoogle Scholar
  17. 17.
    Ma, J., Zhang, A.H., Xia, Y.F., Zhang, L.P.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215, 3318–3326 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dahasert, N., Öztürk, İ., Kiliç, R.: Experimental realizations of the HR neuron model with programmable hardware and synchronization applications. Nonlinear Dyn. 70, 2343–2358 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rosin, D.P., Rontani, D., Gauthier, D.J., Schöll, E.: Control of synchronization patterns in neural-like Boolean networks. Phys. Rev. Lett. 110, 104102-1-4 (2013)CrossRefGoogle Scholar
  20. 20.
    Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984)CrossRefGoogle Scholar
  21. 21.
    dos Santos Coelho, L., de Andrade Bernert, D.L.: A modified ant colony optimization algorithm based on differential evolution for chaotic synchronization. Exp. Syst. Appl. 37, 4198–4203 (2010)CrossRefGoogle Scholar
  22. 22.
    Li, L.X., Yang, Y.X., Peng, H.P., Wang, X.D.: Parameters identification of chaotic systems via chaotic ant swarm. Chaos Soliton Fractals 28, 1204–1211 (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185, 1155–1173 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Li, Y.Y., Wen, Q.Y., Li, L.X., Peng, H.P.: Hybrid chaotic ant swarm optimization. Chaos Soliton Fractals 42, 880–889 (2009)CrossRefGoogle Scholar
  25. 25.
    Liu, L.Z., Zhang, J.Q., Xu, G.X., Liang, L.S., Huang, S.F.: A modified chaotic ant swarm optimization algorithm. Acta Phys. Sin 62, 170501-1-6 (2013)Google Scholar
  26. 26.
    Li, Y.Y., Wen, Q.Y., Li, L.X.: Modified chaotic ant swarm to function optimization. J. China Univ. Posts Telecommun. 16, 58–63 (2009)Google Scholar
  27. 27.
    Wan, M., Wang, C., Li, L., Yang, Y.: Chaotic ant swarm approach for data clustering. Appl. Soft Comput. 12, 2387–2393 (2012)CrossRefGoogle Scholar
  28. 28.
    Liu, L.Z., Zhang, J.Q., Xu, G.X., Liang, L.S., Wang, M.S.: A chaotic secure communication method based on chaos systems partial series parameter estimation. Acta Phys. Sin 63, 010501-1-6 (2014)Google Scholar
  29. 29.
    Li, L.X., Peng, H.P., Yang, Y.X., Wang, X.D.: Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm. Acta Phys. Sin 56, 51–55 (2007)MATHGoogle Scholar
  30. 30.
    Mikkelsen, K., Imparato, A., Torcini, A.: Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity. Phys. Rev. Lett. 110, 208101 (2013)CrossRefGoogle Scholar
  31. 31.
    Han, F., Wiercigroch, M., Fang, J.A., Wang, Z.J.: Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity. Int. J. Neural Syst. 21, 415–425 (2011)CrossRefGoogle Scholar
  32. 32.
    Li, L.X., Peng, H.P., Yang, Y.X.: T-S fuzzy system design by chaotic ant swarm algorithm. Acta Phys. Sin 57, 703–708 (2008)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jiqian Zhang
    • 1
  • Shoufang Huang
    • 1
  • Sitao Pang
    • 1
  • Maosheng Wang
    • 1
  • Sheng Gao
    • 1
  1. 1.College of Physics and Electronic InformationAnhui Normal UniversityWuhuPeople’s Republic of China

Personalised recommendations