Nonlinear Dynamics

, Volume 84, Issue 2, pp 559–581 | Cite as

Dynamical analysis and design of active orthoses for spinal cord injured subjects by aesthetic and energetic optimization

  • D. García-Vallejo
  • J. M. Font-Llagunes
  • W. Schiehlen
Original Paper


The dynamic analysis and simulation of human gait using multibody dynamics techniques has been a major area of research in the last decades. Nevertheless, not much attention has been paid to the analysis and simulation of robotic-assisted gait. Simulation is a very powerful tool both for assisting the design stage of active rehabilitation robots and predicting the subject–orthoses cooperation and the resulting aesthetic gait. This paper presents a parameter optimization approach that allows simulating gait motion patterns in the particular case of a subject with incomplete spinal cord injury (SCI) wearing active knee–ankle–foot orthoses at both legs. The subject is modelled as a planar multibody system actuated through the main lower limb muscle groups. A muscle force-sharing problem is solved to obtain optimal muscle activation patterns. Furthermore, denervation of muscle groups caused by the SCI is parameterized to account for different injury severities. The active orthoses are modelled as external devices attached to the legs, and their dynamic and performance parameters are taken from a real prototype. Numerical results using energetic and aesthetic objective functions, and considering different SCI severities are obtained. Detailed discussions are given related to the different motion and actuation patterns both from muscles and orthoses. The proposed methodology opens new perspectives towards the prediction of human-assisted gait, which can be very helpful for the design of new rehabilitation robots.


Human gait Active orthosis Parameter optimization Spinal cord injury Energetics Aesthetics 



This work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2012-38331-C03-02, co-funded by the European Union through ERDF funds. The support is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors do not have any conflicts of interest with regard to this paper and the materials contained herein.


  1. 1.
    Peasgood, M., McPhee, J., Kubica, E.: Stabilization and energy optimization of a dynamic walking gait simulation. In: Proceedings of the ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering, Long Beach, CA, USA (2005)Google Scholar
  2. 2.
    Ackermann, M., Schiehlen, W.: Dynamic analysis of human gait disorder and metabolical cost estimation. Arch. Appl. Mech. 75(10–12), 569–594 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Al Nazer, R., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: Flexible multibody simulation approach in the analysis of tibial strain during walking. J. Biomech. 41, 1036–1043 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Rodrigo, S.E., Ambrosio, J.A.C., Da Silva, M.P.T., Penisi, O.H.: Analysys of human gait based on multibody formulations and optimization tools. Mech. Based Des. Struct. Mach. 36(4), 446–477 (2008)CrossRefGoogle Scholar
  5. 5.
    Bessonnet, G., Seguin, P., Sardain, P.: A parametric optimization approach to walking pattern synthesis. Int. J. Robot. Res. 24(7), 523–536 (2005)CrossRefGoogle Scholar
  6. 6.
    Ackermann, M.: Dynamics and Energetics of Walking with Prostheses. Shaker-Verlag, Aachen (2007)Google Scholar
  7. 7.
    García-Vallejo, D., Schiehlen, W.: 3D-simulation of human walking by parameter optimization. Arch. Appl. Mech. 82, 533–556 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Umberger, B.R.: Effects of suppressing arm swing on kinematics, kinetics and energetics of human walking. J. Biomech. 41, 2575–2580 (2008)CrossRefGoogle Scholar
  9. 9.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  10. 10.
    Hubli, M., Dietz, V.: The physiological basis of neurorehabilitation—locomotor training after spinal cord injury. J. NeuroEng. Rehabil. 10(5), 1–8 (2013)Google Scholar
  11. 11.
    Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Robot. 24, 1–15 (2008)CrossRefGoogle Scholar
  12. 12.
    Blaya, J., Herr, H.: Adaptive control of a variable-impedance ankle–foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 24–31 (2004)CrossRefGoogle Scholar
  13. 13.
    Yakimovich, T., Lemaire, E.D., Kofman, J.: Engineering design review of stance-control knee–ankle–foot orthoses. J. Rehabil. Res. Dev. 46, 257–267 (2009)CrossRefGoogle Scholar
  14. 14.
    Font-Llagunes, J.M., Pàmies-Vilà, R., Alonso, F.J., Lugrís, U.: Simulation and design of an active orthosis for an incomplete spinal cord injured subject. Procedia IUTAM 2, 68–81 (2011)CrossRefGoogle Scholar
  15. 15.
    Sawicki, G., Ferris, D.: A pneumatically powered knee–ankle–foot orthosis (KAFO) with myoelectric activation and inhibition. J. NeuroEng. Rehabil. 6, 6–23 (2009)CrossRefGoogle Scholar
  16. 16.
    Strickland, E.: Good-bye, wheelchair. IEEE Spectr. 49(1), 30–32 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Esquenazi, A., Talaty, M., Packel, A., Saulino, M.: The rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil. 91(11), 911–921 (2012)CrossRefGoogle Scholar
  18. 18.
    Lugrís, U., Carlín, J., Luaces, A., Cuadrado, J.: Gait analysis system for spinal cord-injured subjects assisted by active orthoses and crutches. Proc. IMechE Part K: J. Multi-body Dyn. 227(4), 363–374 (2013)Google Scholar
  19. 19.
    Kurz, T., Eberhard, P., Henninger, C., Schiehlen, W.: From Neweul to Neweul-M\(^2\): symbolical equations of motion for multibody system analysis and synthesis. Multibody Syst. Dyn. 24(1), 25–41 (2010)Google Scholar
  20. 20.
    Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Riener, R., Edrich, T.: Identification of passive elastic joint moments in the lower extremities. J. Biomech. 32, 539–544 (1999)CrossRefGoogle Scholar
  22. 22.
    Stein, R.B., Zehr, E.P., Lebiedowska, M.K., Popovic, D.B., Scheiner, A., Chizeck, H.J.: Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Trans. Rehabil. Eng. 4(3), 201–211 (1996)CrossRefGoogle Scholar
  23. 23.
    Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136–195 (1938)CrossRefGoogle Scholar
  24. 24.
    Zajac, F.: Muscle and tendon: properties, models, scaling and applications to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)Google Scholar
  25. 25.
    Nagano, A., Gerritsen, K.G.M.: Effects of neuromuscular strength training on vertical jumping performance—a computer simulation study. J. Appl. Biomech. 17, 113–128 (2001)Google Scholar
  26. 26.
    Winters, J.M.: Hill-based muscle models: a system engineering perspective. In: Winters, J.M., Woo, S .L.-Y. (eds.) Multiple Muscle Systems, pp. 69–93. Springer, Berlin (1990)Google Scholar
  27. 27.
    Alonso, F.J., Romero, F., Pàmies-Vilà, R., Lugrís, U., Font-Llagunes, J.M.: A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects. Multibody Syst. Dyn. 28(1–2), 109–124 (2012)Google Scholar
  28. 28.
    Hincapie, J.G., Blana, D., Chadwick, E.K., Kirsch, R.F.: Musculoskeletal model-guided, customizable selection of shoulder and elbow muscles for a C5 SCI neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 16(3), 255–263 (2008)CrossRefGoogle Scholar
  29. 29.
    Sober, S.J., Stark, J.M., Yamasaki, D.S., Lytton, W.W.: Receptive field changes after strokelike cortical ablation: a role for activation dynamics. J. Neurophysiol. 78(6), 3438–3443 (1997)Google Scholar
  30. 30.
    Umberger, B.R., Gerritsen, K.G.M., Martin, P.E.: A model of human muscle energy expenditure. Comput. Methods Biomech. Biomed. Eng. 6(2), 99–111 (2003)CrossRefGoogle Scholar
  31. 31.
    Brand, R.A., Pedersen, D.R., Friederich, J.A.: The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J. Biomech. 19(8), 589–596 (1986)CrossRefGoogle Scholar
  32. 32.
    Ackermann, M., Gros, H.: Measurements of Human Gaits. Technical Report Zwischenbericht ZB-144, Institute of Engineering and Computational Mechanics, University of Stuttgart, 70550 Stuttgart (2005)Google Scholar
  33. 33.
    Strang, G.: Linear Algebra and Its Applications, 2nd edn. Academic Press, New York (1980)MATHGoogle Scholar
  34. 34.
    van Soest, A.J., Bobbert, M.F.: The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69, 195–204 (1993)CrossRefGoogle Scholar
  35. 35.
    Cole, G.K., van den Bogert, A.J., Herzog, W., Gerritsen, K.G.M.: Modeling of force production in skeletal muscle undergoing stretch. J. Biomech. 29, 1091–1104 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • D. García-Vallejo
    • 1
  • J. M. Font-Llagunes
    • 2
  • W. Schiehlen
    • 3
  1. 1.Department of Mechanical Engineering and ManufacturingUniversity of SevilleSevilleSpain
  2. 2.Biomechanical Engineering Lab, Department of Mechanical Engineering and Biomedical Engineering Research CentreUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Institute of Engineering and Computational MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations